BULL. AUSTRAL. MATH. SOC.

VOL. 14 (1976), 463-465.

A theorem on diophantine approximations

Kurt Mahler

Dedicated to Th. Schneider

If S is a set of positive integers which contains 1, 2, ..., n-1, but not n or any multiple of n, where $n \ge 2$, then

> $\sup \inf \|s\alpha\| = 1/n .$ afR sfS

Let R be the field of real numbers. For $\alpha \in R$, denote as usual by

Here R is the field of real numbers, and $\|\alpha\|$ denotes the distance of α from the nearest integer.

|α| the distance of α from the nearest integer; thus always

$$0 \le \|\alpha\| \le 1/2.$$

Further let n be any integer not less than 2.

with the following two properties: (P_1) S contains the integers 1, 2, ..., n-1;

 (P_2) S does not contain any of the integers $n, 2n, 3n, \ldots$

 $\sup \inf \|s\alpha\| = 1/n .$

α ER \$ ES

THEOREM. Let S be a finite or infinite set of positive integers

Then

Proof. Put

Received 11 March 1976. The author is indebted to B.H. Neumann for suggesting a generalisation of his original theorem.

 $f(\alpha|S) = \inf \|s\alpha\|$, $F(S) = \sup f(\alpha|S)$.

If S and T are any two sets such that $S \supset T$, then evidently

We have to show that F(S) = 1/n.

 $f(\alpha|S) \le f(\alpha|T)$ for every $\alpha \in R$.

Thus, on putting

$$T = \{1, 2, \ldots, n-1\} \ ,$$
 certainly $f(\alpha|S) \leq f(\alpha|T)$ if S has the property (P_1) as we are

assuming. We therefore begin by proving that $f(\alpha|T) \leq 1/n$ for all α .

The two linear forms
$$\alpha x - y$$
 and x in x and y have the determinant 1 . It follows then from Minkowski's theorem on linear forms

$$|\alpha x - y| \leq 1/n , |x| < n$$

has a solution in integers
$$x$$
, y not both zero. If $x = 0$, then y does

not vanish, and the first inequality (1) gives a contradiction; hence
$$x \neq 0$$
. Without loss of generality x is positive, hence by (1) is one of

for s = x, $||s\alpha|| = |\alpha x - y| \le 1/n$

which implies that
$$f(\alpha|T) \leq 1/n$$
 for all $\alpha \in \mathbb{R}$ and therefore that both $F(T) \leq 1/n$ and $F(S) \leq 1/n$.

the integers 1, 2, ..., n-1. Further $1/n \le 1/2$ by hypothesis. Hence

In the other direction, we shall deduce from the assumption (P_2) that

$$F(S) \ge 1/n$$
 . It suffices to prove that

 $||s.1/n|| \ge 1/n$ for all $s \in S$.

This is obvious because
$$s$$
 is not a multiple of n and hence the distance of $s.1/n$ from the nearest integer is not 0 , but is an integral multiple

of 1/n .

As an application, denote by T the set of all primes and put $S = T \cup \{1\}$. It is clear that S has both the properties (P_1) and (P_2)

with n = 4; hence

$$F(S) = 1/4 .$$

There is then a number α , say in the interval from 0 to 1 , such that

 $\|\alpha\| > 1/4$ and $\|p\alpha\| > 1/4$ for all primes p.

where in the lower bound p runs over all primes.

 $F(T) = \sup \inf \|p\alpha\| = 1/4,$

If this assertion is false, then necessarily F(T) > F(S) = 1/4.

α∈R p

The first inequality allows us to assume that α lies between 1/4 and 3/4 , hence by symmetry between 1/4 and 1/2 . But it is easily

verified that $||3\alpha|| \le 1 - 3\alpha \le 1/4$ if $1/4 \le \alpha \le 1/3$,

We assert that also

(2)

 $||3\alpha|| \le 3\alpha - 1 \le 1/4$ if $1/3 \le \alpha \le 2/5$, $\|2\alpha\| \le 1 - 2\alpha \le 1/5$ if $2/5 \le \alpha \le 1/2$.

Therefore $f(\alpha|T)$ cannot be greater than 1/4 when α lies between 1/4

and 3/4 and so is never greater than 1/4 . Therefore also $F(T) \leq 1/4$, and hence F(T) = 1/4 because of $F(T) \ge F(S)$.

Note added in proof [26 March 1976]. A study of the proof of the theorem has led me to the following conjecture:

CONJECTURE. Let m and n be two positive integers such that $2m \leq n$. Let S be a finite or infinite set of positive integers with the following two properties:

 (Q_1) S contains the integers m, m+1, m+2, ..., n-m; (Q_2) every element of S satisfies the inequality

Then

 $\sup \inf ||s\alpha|| = m/n .$ afR sfS

For m = 1 this conjecture is identical with the theorem.

 $||s/n|| \geq m/n$.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra. ACT.