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On a Class of Transcendental
Decimal Fractions
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Almost forty years ago, I proved (cf. [1], [2]) that the decimal fraction
0.123456789101012 - - -

is transcendental. In the present paper, this result will be generalized, as
follows.

Denote by a(n) an arbitrary positive integral-valued arithmetic function.
Write successively after the decimal point

each of the 1-digit numbers 1,2,---,9, each «(1) times repeated,

each of the 2-digit numbers 10, 11, --,99, each «(2) times repeated,

each of the 3-digit numbers 100, 101, ---,999, each «(3) times repeated,
etc.

It will be proved that the resulting decimal fraction is transcendental.

Since this slight generalization makes perhaps the method of proof a little
clearer, we establish the analogous theorem for fractions to an arbitrary
integral basis g=2.

§1. Let q=2 be a fixed integer and put

x=1/q.
If

a={a,a,as, -}
denotes a fixed sequence of positive integers, put
a(0)=0, any=a,+a>+---+a, for n=1,

and for n=1,

A=) hla(@"=1—a(@" "~ 1)
h=1

=na(q"-1)—(alg—D+alg =+ -+alqg" '—1)).
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By digits to the basis ¢ we mean any one of the numbers 0,1,2,-- -,
q— 1. Instead of the ordinary decimal expansion we shall be concerned with
expansions to the basis g, and we shall write symbolically

d wd i doido- didads- -+ for Z dhxh 5

h=—m
here the d, denote digits.
§2. Let in particular
o(a)=0-d,drds- -~

be the expansion to the basis g in which we have written successively after
the point the expansions to the basis g of the integers

1, a, times repeated ,
2, a, times repeated

3, as times repeated ,

etc.; thus dy, d>, ds, - - -, are the resulting digits of o(a). We begin by writing
this number as a rapidly convergent series.

In their expansions to the basis g, the integers from 1 to g — 1 have exactly
one digit, those from q to g°—1 have exactly two digits, those from ¢° to
q’—1 have exactly three digits, etc. Hence in the expansion of o(a) there are
after the point

ayta+---t+a,=alqg—1)
single digits which correspond to 1-digit integers; next there are
2(ag+ agi - Fap)=2(alg’>—1)—alqg—1))

digits in pairs which correspond to 2-digit integers; following this, there
are

3agptaga++ag)=3(alg’-1)—alg>—1))
digits in sets of three which correspond to 3 digit integers, etc.

By its definition in Section 1, A, is then the total number of digits in o(a)
after the point derived from integers which, to the basis g, have at most n
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digits. Here the first integer which, to the basis g, has n digits is
q" '=100---00,

where there are n—1 digits 0. In the expansion of o(a) it evidently occurs
with the factor

§3. Now put

a.1
5, = Z k(xn{a(k~l)+1)+xn{a(k*l)+2}+. . .+xna(k)) i
k:qu'l

n:1’2,3’...’

and in particular,
a-1
5 = Z k(xa(k71)+l+xa(k-»1)+2+- . _+xa(k>)'
k=1

The terms in s, in the lowest and the highest powers of x are

_1 n—-1__ n.__
qn . xn{a(q +1} and (qn _ ]) . xna(q 1) ,

respectively. Hence, for n=2, the first and the last terms of the product

(A, _+tn)—n{algr'—1)+1}

X Sn = tn SaY’

are
q" o xTe and (q"—=1) - x™,

respectively.

It follows that s, is the sum of all the contributions to o(a) rrom the
1-digit integers and similarly, for n =2, t, is the sum of all the contributions
to o(a) from the n-digit integers. Consequently

ola)=s+ i by .

n=2
Here, for n=2, by the definition of A, in Section 1,

(At m)=n(a(@" =1+ 1)= A,y —nalg"" —1)
:“(a(q_1)+a(q2~l)+. . .+a(qn*1_ 1)) .
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Hence, if for n=2 we put

e(rl):a(q—l)+a(q2_1)+. . .+a(qn~l_l) ’

we have shown that

ola)=s,+ Z x Mg,
n=2

§4. In this expansion, the sums s, can be replaced by more explicit
expressions. As a geometric series,

n

xn{a(kfl)+]}+xn{a(k71)+2}+. . .+xna(k): 1 X - (xna(kfl)_xna(k)) ,
- X

so that

n qr—1

k(xnu(kwl) _ xnu(k)) ,

or equivalently,

qr1
o = Xn (qnvlxna(q""‘~1)_qnxna(q"vl)_i_ Z xna(k)) .
n P n n—1

1—x k=q

It follows therefore that

q—1
ola)= al (1—qx“("Al)+ Z x“””)

1-x k=1

(1

0 n—e(n) qr—1
+ Z - (qnflxna(q"*lfl)ﬁqnxna(q"71)+ Z Xna(k)) )
n=2 1 - X k=q"!

In a special case, to which we now proceed, this somewhat involved
formula can be further simplified.

§5. For this purpose we assume from now on that, for every positive

integer n, all the integers

ar, where q" 'sk=q"-1,

have one and the same value, the value «a(n) say; here a(n) is a positive
integer-valued function of n which is not otherwise restricted.
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We find now easily that

a(k)=a(l)k for 1

IA

k=q-1,
a(k)=(a(D)+a@)q+ - +aln=1)g" Ng=D+a(m(k=q""+1)

for q"'=k=q"-1,nz=2.
Thus, in particular, for n=1,2,3,- -,

alq"—1)=(a()+a)g+---+a(n)g" Ng-1),
whence

e(n)=((n—Da()+(n-2)a)g+---+1-a(n— q" )(g—1) for nz=2.
The explicit expressions for a(k) imply next that

a1 -
Z xR = Z g ara@atran=1ar2Hg-Dra(mk—qm1+1)

k:qn—1 k:qnvl
1-— xna(n)(Q*l)q""

_ Jnda(D+a@)g++aln—1)q" 2Hg—1) |  na(n)
=X X - 1— ha(n) 5

X
while moreover,
— 1. — P — n-2 —
qn lxna(q 1)_qn 1xn{a(l)+a(2)q+ +a(n—1)q Ha 1),
qnxna(q"—l): qnxn{a(l)+a(2)q+"'+a(n'*1)q"’2}(Q'1) . x"a(")(Q*l)Q"" .
Therefore,
qr1
qn——lxna(qﬂ*‘—l)_qnxnu(q"*l)+ Z xna(k>:xn{a(1)+a(2)q+~”+a(n—1)q"*2}(q—1)
k=q"!
n—1 n—1 _na(n) na(n) n n_na(n) na(n)
% q9 —q9 X +x 9 —qX +x na(n)(g—1)q"!
1_'xna(n) 1ﬁxna(n) X .
It follows that
n na(n)
X X nfa(D)+a@q++e(n-1)q""2(q=1)

5, =— ———————
Tl x"1—xm™

X((qna(n)+n-1__qn——l+1)_(qna(n)+n_qn+1)xna(n)(q—1)q"”‘);

here we have applied the equation x =1/q.
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On substituting this value of s, in (1), we find that

X «ll) _ (el _ o 1)@ D@D
o(a) (1__x)(1 a(l))(q (q q+1)x )

na (n)+n

+
; 1 xn)(l mx(n))

X ((qnu(n)+n~~l . qnfl + 1)__ (qlta(n)+n_ qn + ]})xna(n}(qfl)q"”‘-)

X X{l-zx(l)+2-u(2)q+~-~+(n~1)&(}171)({"’2}((471) )

This formula can finally be simplified by taking together the positive part of
the n-th term with the negative part of the (n—1)-st term throughout. Thus
we arrive at the following simple expansion where we have once more used
the fact that x =1/q:

a(l)

olq)=————+"—

@ =@
(2) i ( na(n)+n qn+1 q(n+])a(n+l)+ann+1 >
e 1)(qu(n) 1) (qn+1 1)(q(n+1)a(n»%l)_ 1)

~Ja(H+2a(2)q+---+na(n)g"}Hg—1)

xq
In the special case when

an)y=1 for all n,

this development of o(a) reduces to a formula which I obtained almost forty
years ago in [1], [2]. (See also Nicholson [5] and my recent note [4])

§6. From its definition in Section 2, o(a) is obviously an irrational
number. We shall now decide whether this number is algebraic or not.
At this point it is convenient to introduce some abbreviations.
Put
qna(n)+n __qn +1 q(n+l)a(n-v’~l)—+—n_qn,+1

(qn . 1)(qna(n)w 1)_(qn+1 _ 1)(q(n+])a(n+1)» 1)

U, =

and
E,={a()+2a(2)q+- - +na(n)q" Hq—1),

and write o(a) as

a(l) n—1
ola)= <_~__q___.__ Z ukq45k> _ Z kg "
k

(q-1(q""=1) =
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Let now
D,=(q—-D(g>=1 - (q"=D(q*"=(g**P=1)-- - (g"""~1),

and

a(l) n—1

B, = D.q", A,,=B,1<—--g-;;—--~— u *Ek), R,= ) uq ™.
1 (q—1(q (I)_l) kzl K kgn K

oo

Then B, >0 ahd A, are integers; R, is a positive number, and

(3) a(a)zgﬁ~Rn.

It follows easily from the definition of u, that

1
lim u, =312

n—»co

Since the numbers E, increase sufficiently rapidly,
4) R,~(q—1)g """,

and n tends to infinity.

Further
D A2+ ab{a () 2a(2)+ - +na(n)}
n

~q ;
whence, by the definition of E,,

(5) fim 280

n—>00

0.

n

§7. Next,

n

lim inf

n-—->00

N
=

=q.

n—1
For let this assertion be false. There exists then a constant ¢ satisfying

0<c<q
such that
En = CEn._l
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for all sufficiently large n. But then, as n increases indefinitely,
E,=0(c"),

contrary to

E,={a()+2a(2)q+" - -+na(n)q" 'Hg—1)=na(n)(q"—q" ).

Since g=2, relation (6) implies that there exists an infinite strictly
increasing sequence of positive integers

N:{nl7 Ny, N3, * '}
such that

(7) E,>3E,., for neN.

Hence, by (3) and (4), for all sufficiently large ne N,

A s
0< I < g 3B
'U(“) B,| 4

n

Further, for such n, by the definition of B, and by (5) and (7,
(8) B,<q",

and therefore

0< BS/4

(a)*g—

n

if ne N is sufficiently large.
In this estimate, the denominator Bn:anEH tends to infinity and, by
(5), (7) and (8),

D, <BY®

for all sufficiently large ne N. Moreover, the second factor g™ has only
finitely many bounded prime factors.

It follows then, by Ridout’s generalization of Roth’s theorem ([6], see also
[3]), that o(a) is a transcendental number. We have thus proved the following
result.



ON A CLASS OF TRANSCENDENTAL DECIMALS 725

THEOREM 1. If n runs over the positive integers, if, for every n, a(n) is a
positive integer, and if in the definition of o(a),

a=an) for g '=k=q"-1,
then o(a) is transcendental.
The following result can also be proved.

TueoreM 2. Under the same hypothesis as in Theorem 1, o(a) is a
Liouville number if and only if

sup

n n—1

The proof is not difficult and may be omitted.

We have assumed that a(n) is always positive. Actually, this assumption is
too restrictive, and Theorem 1 remains valid if a(n) is allowed to assume the
value 0 provided there are infinitely many n for which a(n) is positive.
Whenever a(n) vanishes, the representation (2) of o(a) becomes invalid. But,
in order to obtain a correct representation of a(a), it suffices to omit in (2)
the two contributions which correspond to each a(n)=0.

There remains the unsolved problem whether Theorem 1 has an analogue
for general sequences a.
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