(1976)

On a Class of Transcendental **Decimal Fractions**

The Australian National University

KURT MAHLER

Almost forty years ago, I proved (cf. [1], [2]) that the decimal fraction $0.123456789101012 \cdot \cdot \cdot$

is transcendental. In the present paper, this result will be generalized, as follows. Denote by $\alpha(n)$ an arbitrary positive integral-valued arithmetic function.

Write successively after the decimal point each of the 1-digit numbers $1, 2, \dots, 9$, each $\alpha(1)$ times repeated,

each of the 2-digit numbers $10, 11, \dots, 99$, each $\alpha(2)$ times repeated, each of the 3-digit numbers $100, 101, \dots, 999$, each $\alpha(3)$ times repeated,

It will be proved that the resulting decimal fraction is transcendental.

Since this slight generalization makes perhaps the method of proof a little clearer, we establish the analogous theorem for fractions to an arbitrary integral basis $q \ge 2$.

etc.

If

§1. Let $q \ge 2$ be a fixed integer and put

x = 1/q.

 $a = \{a_1, a_2, a_3, \cdots \}$

denotes a fixed sequence of positive integers, put

a(0) = 0, $a(n) = a_1 + a_2 + \cdots + a_n$ for $n \ge 1$,

and for $n \ge 1$, $A_n = \sum_{h=1}^{n} h(a(q^h - 1) - a(q^{h-1} - 1))$

 $= na(q^{n}-1) - (a(q-1) + a(q^{2}-1) + \cdots + a(q^{n-1}-1)).$ © 1976 by John Wiley & Sons, Inc.

By digits to the basis q we mean any one of the numbers $0, 1, 2, \cdots$, q-1. Instead of the ordinary decimal expansion we shall be concerned with expansions to the basis q, and we shall write symbolically

$$d_{-m}d_{-m+1}\cdots d_{-1}d_0\cdot d_1d_2d_3\cdots \quad \text{for} \quad \sum_{h=-m}^{\infty}d_hx^h \ ;$$
 here the d_h denote digits.

after the point

§2. Let in particular

$$\sigma(a) = 0 \cdot d_1 d_2 d_3 \cdot \cdot \cdot$$

the point the expansions to the basis q of the integers 1, a_1 times repeated,

2,
$$a_2$$
 times repeated,

be the expansion to the basis q in which we have written successively after

3,
$$a_3$$
 times repeated,

etc.; thus d_1, d_2, d_3, \cdots , are the resulting digits of $\sigma(a)$. We begin by writing this number as a rapidly convergent series.

In their expansions to the basis q, the integers from 1 to q-1 have exactly one digit, those from q to q^2-1 have exactly two digits, those from q^2 to

 q^3-1 have exactly three digits, etc. Hence in the expansion of $\sigma(a)$ there are

$$\cdots + a_{n-1} = a(a-1)$$

 $a_1 + a_2 + \cdots + a_{n-1} = a(n-1)$

 $2(a_a + a_{a+1} + \cdots + a_{a^2-1}) = 2(a(q^2-1) - a(q-1))$

 $3(a_{a^2} + a_{a^2+1} + \cdots + a_{a^3-1}) = 3(a(q^3-1) - a(q^2-1))$

digits in sets of three which correspond to 3 digit integers, etc.

By its definition in Section 1, A_n is then the total number of digits in $\sigma(a)$ after the point derived from integers which, to the basis q, have at most n ON A CLASS OF TRANSCENDENTAL DECIMALS

where there are n-1 digits 0. In the expansion of $\sigma(a)$ it evidently occurs with the factor $\chi^{A_{n-1}+n}$.

 $a^{n-1} = 100 \cdot \cdot \cdot \cdot 00$.

§3. Now put
$$s_n = \sum_{k=q^{n-1}}^{q^{n-1}} k(x^{n\{a(k-1)+1\}} + x^{n\{a(k-1)+2\}} + \dots + x^{na(k)}),$$

$$S_n =$$

and in particular,

are

respectively.

to $\sigma(a)$ from the *n*-digit integers. Consequently

Here, for $n \ge 2$, by the definition of A_n in Section 1,

 $(A_{n-1}+n)-n(a(q^{n-1}-1)+1)=A_{n-1}-na(q^{n-1}-1)$

$$a(k-1)+1 + 1$$

$$s_1 = \sum_{k=1}^{q-1} k(x^{a(k-1)+1} + x^{a(k-1)+2} + \cdots + x^{a(k)}).$$

 $x^{(A_{n-1}+n)-n\{a(q^{n-1}-1)+1\}}s_n=t_n$ say,

 $q^{n-1} \cdot x^{A_{n-1}+n}$ and $(q^n-1) \cdot x^{A_n}$,

It follows that s_1 is the sum of all the contributions to $\sigma(a)$ from the 1-digit integers and similarly, for $n \ge 2$, t_n is the sum of all the contributions

 $\sigma(a) = s_1 + \sum_{n=1}^{\infty} t_n.$

The terms in
$$s_n$$
 in the lowest and the highest powers of x are
$$\sum_{n=1}^{n-1} n\{a(a^{n-1}-1)+1\}$$

 $= -(a(q-1) + a(q^2-1) + \cdots + a(q^{n-1}-1))$.

$$\operatorname{rs} \operatorname{of} x$$
 a

$$q^{n-1} \cdot x^{n\{a(q^{n-1}-1)+1\}}$$
 and $(q^n-1) \cdot x^{na(q^n-1)}$,

respectively. Hence, for $n \ge 2$, the first and the last terms of the product

 $n = 1, 2, 3, \cdots$

so that

(1)

or equivalently,

It follows therefore that

 $\sigma(a) = \frac{x}{1 - r} \left(1 - qx^{a(q-1)} + \sum_{i=1}^{q-1} x^{a(k)} \right)$

formula can be further simplified.

integer n, all the integers

we have shown that

 $e(n) = a(q-1) + a(q^2-1) + \cdots + a(q^{n-1}-1)$

expressions. As a geometric series,

 $\sigma(a) = s_1 + \sum_{n=0}^{\infty} x^{-e(n)} s_n.$

 $s_n = \frac{x^n}{1 - x^n} \left(q^{n-1} x^{na(q^{n-1}-1)} - q^n x^{na(q^n-1)} + \sum_{k=2^{n-1}}^{q^n-1} x^{na(k)} \right).$

In a special case, to which we now proceed, this somewhat involved

§5. For this purpose we assume from now on that, for every positive

 a_k , where $q^{n-1} \le k \le q^n - 1$,

have one and the same value, the value $\alpha(n)$ say; here $\alpha(n)$ is a positive

integer-valued function of n which is not otherwise restricted.

KURT MAHLER

In this expansion, the sums s_n can be replaced by more explicit

 $x^{n\{a(k-1)+1\}} + x^{n\{a(k-1)+2\}} + \cdots + x^{na(k)} = \frac{x^n}{1 - x^n} (x^{na(k-1)} - x^{na(k)}),$

 $S_n = \frac{x^n}{1 - x^n} \sum_{k=n-1}^{q^{n-1}} k(x^{na(k-1)} - x^{na(k)}),$

 $+ \sum_{n=1}^{\infty} \frac{x^{n-e(n)}}{1-x^n} \left(q^{n-1} x^{na(q^{n-1}-1)} - q^n x^{na(q^n-1)} + \sum_{n=1}^{q^n-1} x^{na(k)} \right).$

ON A CLASS OF TRANSCENDENTAL DECIMALS

Therefore,

It follows that

$$(\alpha(1) + \alpha(2)q + \cdots)$$

 $a(k) = (\alpha(1) + \alpha(2)q + \dots + \alpha(n-1)q^{n-2})(q-1) + \alpha(n)(k-q^{n-1}+1)$ for $q^{n-1} \le k \le q^n - 1, \ n \ge 2$.

Thus, in particular, for $n = 1, 2, 3, \dots$,

$$a(q^n-1) = (\alpha(1) + \alpha(2)q + \cdot$$
 whence

 $e(n) = ((n-1)\alpha(1) + (n-2)\alpha(2)q + \dots + 1 \cdot \alpha(n-1)q^{n-2})(q-1)$ for $n \ge 2$.

$$(n) = ((n-1)\alpha(1) + (n-2)\alpha(2)q + \cdots + 1$$

The explicit expressions for a(k) imply next that

The explicit expressions for
$$a(\kappa)$$
 imply in a^{n-1}

 $\sum_{k=a^{n-1}}^{q^{n-1}} x^{na(k)} = \sum_{k=a^{n-1}}^{q^{n-1}} x^{n(\{\alpha(1)+\alpha(2)q+\cdots+\alpha(n-1)q^{n-2}\}(q-1)+\alpha(n)(k-q^{n-1}+1))}$

$$k = q^{n-1}$$

$$= x^{n \cdot \{\alpha(1) + \alpha(2)q + \dots + \alpha(n-1)q^{n-2}\}(q-1)} \cdot x^{n\alpha(n)} \cdot \frac{1 - x^{n\alpha(n)(q-1)q^{n-1}}}{1 - x^{n\alpha(n)}},$$

e moreover,
$$q^{n-1}x^{na(q^{n-1}-1)} = q^{n-1}x^{n\{\alpha(1)+\alpha(2)q+\cdots+\alpha(n-1)q^{n-2}\}(q-1)},$$

while moreover,

 $s_n = \frac{x^n}{1 - r^n} \frac{x^{n\alpha(n)}}{1 - r^{n\alpha(n)}} x^{n\{\alpha(1) + \alpha(2)q + \dots + \alpha(n-1)q^{n-2}\}(q-1)}$

here we have applied the equation x = 1/q.

 $q^n x^{na(q^n-1)} = q^n x^{n\{\alpha(1)+\alpha(2)q+\cdots+\alpha(n-1)q^{n-2}\}(q-1)} \cdot x^{n\alpha(n)(q-1)q^{n-1}}.$

 $\times \left(\frac{q^{n-1} - q^{n-1} x^{n\alpha(n)} + x^{n\alpha(n)}}{1 - x^{n\alpha(n)}} - \frac{q^n - q^n x^{n\alpha(n)} + x^{n\alpha(n)}}{1 - x^{n\alpha(n)}} x^{n\alpha(n)(q-1)q^{n-1}} \right).$

 $\times ((q^{n\alpha(n)+n-1}-q^{n-1}+1)-(q^{n\alpha(n)+n}-q^n+1)x^{n\alpha(n)(q-1)q^{n-1}})$

 $q^{n-1}x^{na(q^{n-1}-1)} - q^nx^{na(q^n-1)} + \sum_{k=-n-1}^{q^n-1}x^{na(k)} = x^{n\{\alpha(1)+\alpha(2)q+\cdots+\alpha(n-1)q^{n-2}\}(q-1)}$

 $a(q^{n}-1) = (\alpha(1) + \alpha(2)q + \cdots + \alpha(n)q^{n-1})(q-1),$

 $a(k) = \alpha$

(1)k	for	$1 \le k \le q - 1 \; ,$	

the fact that x = 1/q:

(2)

Put

and write $\sigma(a)$ as

and

 $\sigma(a) = \frac{q^{\alpha(1)}}{(a-1)(q^{\alpha(1)}-1)}$

In the special case when

 $\times x^{\{1\cdot\alpha(1)+2\cdot\alpha(2)q+\cdots+(n-1)\alpha(n-1)q^{n-2}\}(q-1)}.$

 $\times q^{-\{\alpha(1)+2\alpha(2)q+\cdots+n\alpha(n)q^{n-1}\}(q-1)}.$

KURT MAHLER

This formula can finally be simplified by taking together the positive part of the n-th term with the negative part of the (n-1)-st term throughout. Thus we arrive at the following simple expansion where we have once more used

 $-\sum_{n=1}^{\infty} \left(\frac{q^{n\alpha(n)+n} - q^n + 1}{(q^n - 1)(q^{n\alpha(n)} - 1)} - \frac{q^{(n+1)\alpha(n+1)+n} - q^n + 1}{(q^{n+1} - 1)(q^{(n+1)\alpha(n+1)} - 1)} \right)$

 $\alpha(n) = 1$ for all n,

this development of $\sigma(a)$ reduces to a formula which I obtained almost forty years ago in [1], [2]. (See also Nicholson [5] and my recent note [4].)

 $u_n = \frac{q^{n\alpha(n)+n} - q^n + 1}{(q^n - 1)(q^{n\alpha(n)} - 1)} - \frac{q^{(n+1)\alpha(n+1)+n} - q^n + 1}{(q^{n+1} - 1)(q^{(n+1)\alpha(n+1)} - 1)}$

 $\sigma(a) = \left(\frac{q^{\alpha(1)}}{(a-1)(q^{\alpha(1)}-1)} - \sum_{k=1}^{n-1} u_k q^{-E_k}\right) - \sum_{k=1}^{\infty} u_k q^{-E_k}.$

number. We shall now decide whether this number is algebraic or not. At this point it is convenient to introduce some abbreviations.

 $E_n = {\alpha(1) + 2\alpha(2)q + \cdots + n\alpha(n)q^{n-1}}(q-1),$

From its definition in Section 2, $\sigma(a)$ is obviously an irrational

$$+\sum_{n=2}^{\infty} \frac{x^{n\alpha(n)+n}}{(1-x^n)(1-x^{n\alpha(n)})}$$

$$+\sum_{n=2}^{\infty} \frac{x^{n\alpha(n)+n}}{(1-x^n)(1-x^{n\alpha(n)})} \times ((q^{n\alpha(n)+n-1}-q^{n-1}+1)-(q^{n\alpha(n)+n}-q^n+1)x^{n\alpha(n)(q-1)q^{n-1}})$$

$$+\sum_{n=2}^{\infty} \frac{x^{n\alpha(n)+n}}{(1-x^n)(1-x^{n\alpha(n)})}$$

$$= \frac{x}{(1-x)(1-x^{\alpha(1)})} \left(q^{\alpha(1)} - (q^{\alpha(1)+1} - q + 1) x^{\alpha(1)(q-1)} \right)$$

$$= \frac{x^{\alpha(1)+1}}{(1-x)(1-x^{\alpha(1)})} \left(q^{\alpha(1)} - (q^{\alpha(1)+1} - q + 1)x^{\alpha(1)(q-1)}\right)$$

$$= \frac{x^{\alpha(1)+1}}{(1-x)(1-x^{\alpha(1)})} \left(q^{\alpha(1)} - (q^{\alpha(1)+1} - q + 1)x^{\alpha(1)(q-1)}\right)$$

$$\sigma(a) = \frac{x^{\alpha(1)+1}}{(1-x)(1-x^{\alpha(1)})} (q^{\alpha(1)} - (q^{\alpha(1)+1} - q + 1)x^{\alpha(1)(q-1)})$$

On substituting this value of s_n in (1), we find that

$$=\frac{x^{\alpha(1)+1}}{(1-x)(1-x^{\alpha(1)})}(q^{\alpha(1)}-(q^{\alpha(1)+1}-q+1)x^{\alpha(1)(q-1)})$$

Let now

ON A CLASS OF TRANSCENDENTAL DECIMALS

 $D_n = (q-1)(q^2-1)\cdots(q^n-1)(q^{\alpha(1)}-1)(q^{2\alpha(2)}-1)\cdots(q^{n\alpha(n)}-1),$

 $B_n = D_n q^{E_{n-1}}, \quad A_n = B_n \left(\frac{q^{\alpha(1)}}{(q-1)(q^{\alpha(1)}-1)} - \sum_{k=1}^{n-1} u_k q^{-E_k} \right), \quad R_n = \sum_{k=n}^{\infty} u_k q^{-E_k}.$

Then
$$B_n > 0$$
 and A_n are integers; R_n is a positive number, and
$$\sigma(a) = \frac{A_n}{R_n} - R_n$$

 $\sigma(a) = \frac{A_n}{R} - R_n.$ It follows easily from the definition of u_n that

$$\lim_{n\to\infty}u_n=\frac{q-1}{q}.$$

Since the numbers E_n increase sufficiently rapidly, $R_n \sim (a-1)q^{-(E_n+1)}$ (4)

(5)

whence, by the definition of E_n ,

Further
$$D_n < q^{\{1+2+\cdots+n\}+\{\alpha(1)+2\alpha(2)+\cdots+n\alpha(n)\}};$$

§7. Next,

$$\lim_{n\to\infty}\inf\frac{E_n}{E_{n-1}}\geqq q.$$

 $\lim_{n\to\infty}\frac{\log D_n}{E}=0.$

For let this assertion be false. There exists then a constant c satisfying

0 < c < qsuch that

 $E_n \leq c E_{n-1}$

contrary to

result.

 $E_n = \{\alpha(1) + 2\alpha(2)q + \dots + n\alpha(n)q^{n-1}\}(q-1) \ge n\alpha(n)(q^n - q^{n-1}).$ Since $q \ge 2$, relation (6) implies that there exists an infinite strictly

KURT MAHLER

 $N = \{n_1, n_2, n_3, \cdots \}$ such that

(7)
$$E_n > \frac{5}{3} E_{n-1} \quad \text{for} \quad n \in N.$$

increasing sequence of positive integers

Hence, by (3) and (4), for all sufficiently large $n \in \mathbb{N}$, $0 < \left| \sigma(a) - \frac{A_n}{R} \right| < q^{-\frac{5}{3}E_{n-1}}$.

Further, for such
$$n$$
, by the definition of B_n and by (5) and (7), (8)
$$B_n < q^{\frac{4}{3}E_{n-1}},$$
 and therefore

and therefore $0 < \left| \sigma(a) - \frac{A_n}{B} \right| < B_n^{-5/4}$

if $n \in N$ is sufficiently large. In this estimate, the denominator $B_n = D_n q^{E_{n-1}}$ tends to infinity and, by (5), (7) and (8),

 $D_{-} < B_{-}^{1/8}$

for all sufficiently large $n \in \mathbb{N}$. Moreover, the second factor $q^{E_{n-1}}$ has only finitely many bounded prime factors.

It follows then, by Ridout's generalization of Roth's theorem ([6], see also [3]), that $\sigma(a)$ is a transcendental number. We have thus proved the following THEOREM 1. If n runs over the positive integers, if, for every n, $\alpha(n)$ is a

positive integer, and if in the definition of $\sigma(a)$, $a_k = \alpha(n)$ for $q^{n-1} \le k \le q^n - 1$,

then $\sigma(a)$ is transcendental.

THEOREM 2. Under the same hypothesis as in Theorem 1, $\sigma(a)$ is a Liouville number if and only if

The proof is not difficult and may be omitted. We have assumed that $\alpha(n)$ is always positive. Actually, this assumption is

too restrictive, and Theorem 1 remains valid if $\alpha(n)$ is allowed to assume the

value 0 provided there are infinitely many n for which $\alpha(n)$ is positive.

the two contributions which correspond to each $\alpha(n) = 0$.

Whenever $\alpha(n)$ vanishes, the representation (2) of $\sigma(a)$ becomes invalid. But, in order to obtain a correct representation of $\sigma(a)$, it suffices to omit in (2)

 $\sup \frac{E_n}{E_{n-1}} = \infty.$

There remains the unsolved problem whether Theorem 1 has an analogue for general sequences a.

Bibliography

- [1] Mahler, K., Über die Dezimalbruchentwicklung gewisser Irrationalzahlen, Mathematica, 4B (Zutphen), 1937, 15 p.
- [2] Mahler, K., Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Proc. Akad. v. Wetensch., Amsterdam, 40, 1937, pp. 421-428.
- [3] Mahler, K., Lectures on Diophantine Approximations, Part I, University of Notre Dame Press,
 - 1961, Chapter IX.
- [4] Mahler, K., On some special decimal fractions (to appear in 1976). [5] Nicholson, A. R., Some results on transcendency, Ph.D. Thesis, University of Manchester, 1952 (unpublished).
- [6] Ridout, D., Rational approximations to algebraic numbers, Mathematika, 4, 1957, pp. 125 - 131.
- Received June, 1976.