On a Special Function

K. Mahler

Department of Mathematics, Research School of Physical Sciences, Australian National University, Canberra, Act. 2500, Australia

Received September 17, 1979

DEDICATED TO PROFESSOR S. CHOWLA ON THE OCCASION OF HIS 70TH BIRTHDAY

Over 50 years ago, when I was his student at the University of Frankfurt a.M., C. L. Siegel explained to me how to apply Mellin's integral $e^{-t} = (1/2\pi i) \times \int \Gamma(s)t^{-s} ds$, where the integration is over a line parallel to the imaginary axis and to the right of s = 0, to the study of the function $f(z) = \sum_{n=0}^{\infty} z^{2^n}$ in the

neighborhood of roots of unity on the complex unit circle |z| = 1. I later could obtain similar results by means of Poisson's or Euler's summation formula. In the present note I return to this old problem and obtain estimates by means of a very elementary method. It has the further advantage that it allows the study of

f(z) in the neighborhood of points on the unit circle which are not roots of unity.

1. Let z be a complex variable. The power series

$$f(z) = \sum_{n=0}^{\infty} z^{2^n}$$

converges and defines a regular function when z lies in the unit disk

$$|z|<1$$
,

but it cannot be continued beyond this disk. For let

$$\epsilon = e^{2\pi i k/2^m}$$

where m and k are integers such that $m \ge 0$ and $0 \le k \le 2^m - 1$, be an arbitrary 2^m th root of unity. Then

$$f(z) = \sum_{n=0}^{m-1} (\epsilon r)^{2^n} + \sum_{n=m}^{\infty} r^{2^n}$$

if $z = \epsilon r$ and $0 \le r < 1$, and here the first sum remains bounded while the second one tends to $+\infty$ as r tends to 1. Therefore all the 2^m th roots of unity

0022-314X/80/010020-07\$02.00/0

(1)

(2)

(3)

We shall now make this well-known result more precise by estimating how f(z) behaves when z approaches the unit circle.

dense on the unit circle |z| = 1, this circle is a natural boundary for f(z).

A SPECIAL FUNCTION

 $z = e^{-t+\phi i}$

2. For this purpose write z in the form

where t is a positive number and ϕ a real number. We are interested in the behaviour of f(z) as t, for arbitrary ϕ , tends to 0 and may therefore, without

loss of generality, assume that already
$$0 < t \le 1.$$

Let, as usual, [x] denote the integral part of the real number x. Then associate with t the nonnegative integer

$$N = \left[\frac{\log(1/t)}{\log 2}\right];$$

hence
$$2^{N}t \le 1 < 2^{N+1}t$$
.

The power series f(z) can be split into the two sums

$$f(z) = f_1(z) + f_2(z),$$

where

where
$$f_1(z)=\sum\limits_{n=0}^{N-1}z^{2^n}$$
 and $f_2(z)=\sum\limits_{n=N}^{\infty}z^{2^n}$.

$$f_1(z) = \sum_{n=0}^\infty z^{2^n}$$
 and $f_2(z) = \sum_{n=N}^\infty$

For the terms of $f_1(z)$,

$$z^{2^n}=e^{-2^nt}\cdot e^{2^n\phi i}=e^{2^n\phi i}+e^{2^n\phi i}(e^{-2^nt}-1),$$

 $e^x \geqslant 1 + x$.

 $|z^{2^n} - e^{2^n\phi i}| = 1 - e^{-2^nt}$

Now for real x.

Therefore

K. MAHLER

 $1 - 2^n t \le e^{-2^n t} \le 1$

 $0 \leqslant 1 - e^{-2^n t} \leqslant 2^n t.$

whence

It follows then from (2) and (3) that

 $\left| f_1(z) - \sum_{i=0}^{N-1} e^{2^n \phi i} \right| \leqslant \sum_{i=0}^{N-1} 2^n t = (2^N - 1) \ t \leqslant 1.$

Next,

 $|f_2(z)| \leqslant \sum_{t=1}^{\infty} e^{-2^n t} \leqslant \sum_{t=1}^{\infty} e^{-2^N k t} = e^{-2^N t} (1 - e^{-2^N t})^{-1} = (e^{2^N t} - 1)^{-1},$

where by (2) and (3),

It follows that

 $|f_{s}(z)| \leq 2.$ On combining the estimates (4) and (5), the following result is found.

Let t and ϕ be real numbers where $0 < t \le 1$, and let N be the nonnegative integer defined by (1). Then uniformly in t and ϕ ,

 $\left| f(z) - \sum_{i=1}^{N-1} e^{2^n \phi i} \right| \leqslant 3.$

I have not tried to replace the constant 3 on the right-hand side by the best possible constant.

and so it follows from (6) that

uniformly in t and ϕ if $0 < t \le 1$.

 $N \sim \frac{\log(1/t)}{\log 2}$,

 $\frac{\log 2}{\log(1/t)} f(e^{-t+\phi i}) = \frac{1}{N} \sum_{i=1}^{N-1} e^{2^{n}\phi i} + O(1/N)$

3. The definition (1) of N implies that

(6)

(5)

(7)

(4)

 $e^{2^N t} - 1 \ge 2^N t \ge 1/2$

(8)

(10)

(11)

through positive values, or equivalently, as N tends to infinity, neither the expression on the left-hand side of (7) nor the first term on the right-hand side of (7) needs tend to a unique limit. Therefore, for each fixed value of ϕ , denote by $S(\phi)$ the set of all possible limits of

A SPECIAL FUNCTION

$$\frac{\log 2}{\log(1/t)} f(e^{-t+\phi i})$$
 as $t \to +0$, and similarly by $T(\phi)$ the set of all possible limits of

$$\frac{1}{N}\sum_{n=0}^{N-1}e^{2^n\phi i}$$
 as $N\to\infty$. The relation between t and N ensures then that always

as
$$N o \infty$$
. The relation between t and N ensures then that alway $S(\phi) = T(\phi)$.

However, exceptionally it may happen that the ordinary limit

However, exceptionally it may nappen that the ordinary limit
$$\lim_{t \to 0} \frac{\log 2}{1 + (e^{-t+i\phi})}, = s(\phi) \text{ say},$$

$$\lim_{t\to+0}\frac{\log 2}{\log(1/t)}f(e^{-t+i\phi}), \qquad = s(\phi) \text{ say},$$

$$\lim_{t\to+0}\frac{\log 2}{\log(1/t)}f(e^{-t+i\phi}), \qquad = s(\phi) \text{ say},$$

$$\lim_{t \to +0} \frac{\log 2}{\log(1/t)} f(e^{-t+i\phi}), \qquad = s(\phi) \text{ say,}$$
 or the ordinary limit

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}e^{2^n\phi i}, \qquad = t(\phi) \text{ say},$$

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}e^{2^n\phi i}, \qquad = t(\phi) \text{ say},$$

does in fact exist. If this is so, then both limits exist simultaneously, and

does in fact exist. If this is so, then both limits exist simultaneously, and
$$s(\phi) = t(\phi). \tag{9}$$

$$s(\phi)=t(\phi). \tag{9}$$

$$s(\phi) = t(\phi).$$
 (9)
The function $f(z)$ satisfies the functional equation

The function
$$f(z)$$
 satisfies the functional equation
$$f(z) = f(z^2) + z.$$

 $S(2\phi) = S(\phi)$ and $T(2\phi) = T(\phi)$,

 $s(2\phi) = s(\phi)$ and $t(2\phi) = t(\phi)$.

From this it follows immediately that

and if $s(\phi)$ and $t(\phi)$ exist, also

K. MAHLER In particular,

s(0) = t(0) = 1.

4. It is convenient to replace ϕ in the last formulas by $2\pi\psi$ where ψ is a further real number because the exponential function of ψ $e(\psi) = e^{2\pi i \psi}$

$$S[\psi]=S(2\pi\psi), \quad T[\psi]=T(2\pi\psi), \quad s[\psi]=s(2\pi\psi), \quad t[\psi]=t(2\pi\psi),$$
 so that always

 $S[\psi] = T[\psi],$ and that

 $s[\psi] = t[\psi]$

if these limits exist. 5. In the special case when ψ is a rational number, we can easily show

that
$$t[\psi]$$
 and hence also $s[\psi]$ exist and determine their common value. Put

 $\psi = p/a$

where
$$p$$
 and q are integers such that

where p and q are integers such that

where
$$p$$
 and q are integers such that

are integers such that
$$0 \leqslant p \leqslant q-1$$

integer Q, by (11)

has the period 1. Further put

$$0 \leqslant p \leqslant q$$
 –

$$0 \leqslant p \leqslant q-1, \quad (p,q)=1.$$

It suffices therefore to study the case when the denominator

If q is a power of 2, it follows from (11) that

t[p/q] = 1.

More generally, if $q = 2^k Q$ is the product of a power of 2 times an odd

t[p/q] = t[p/Q].

g is odd.

$$(p,q) =$$

(13)

(14)

(12)

(15)

A SPECIAL FUNCTION

 $r = \phi(q)$

Euler's function of q, so that by Euler's theorem

Denote by

$$2^r \equiv 1 \pmod{q}$$
,

hence

 $e(2^m p/q) = e(2^n p/q)$ if $m \equiv n \pmod{q}$.

Hence, on writing the integer
$$N$$
 as

$$N = Mr + m$$

where M and m are integers such that

$$M \geqslant 0$$
 and

 $M \geqslant 0$ and $0 \leqslant m \leqslant r - 1$,

$$M\geqslant 0$$
 and

then

$$\sum_{j=1}^{N-1}e(2^{n}p/q)=M\sum_{j=1}^{r}$$

 $\sum_{n=0}^{N-1} e(2^n p/q) = M \sum_{n=0}^{r-1} e(2^n p/q) + \sum_{n=0}^{m-1} e(2^n p/q),$

where we have used that $e(\psi)$ has period 1. In this formula the second sum

has at most
$$r$$
 terms and so its absolute value cannot exceed r . Further, as N tends to infinity, M/N has the limit i/r . It follows that $s[p/q]$ and $t[p/q]$ exist and are given by

tends to infinity,
$$M/N$$
 has the land are given by

$$s[p/q] = t[p/q] = \frac{1}{r} \sum_{n=0}^{r-1} e(2^n p/q),$$
 where $r = \phi(q)$.

where
$$r = q$$
The finite

The finite sum on the right-hand side of this formula, when different from zero, is a Gaussian period from the theory of cyclotomy. (See Kummer [1] and Fuchs [2].)

6. When
$$\phi=2\pi\psi$$
 is not a rational multiple of 2π , $s[\psi]$ and $t[\psi]$ need not exist. A simple example is given by the number

$$\psi = \sum_{n=1}^{\infty} d_n 2^{-n},$$

where the coefficients d_n are digits 0 and 1 defined as follows. First put 1! = 1, digit $d_1 = 1$, then 2! = 2 pairs of digits 0, 1 so that $d_2 = d_4 = 0$, $d_3 = d_5 = 1$. 26 K. MAHLER Then put again 3! = 6 single digits 1, followed by 4! = 24 pairs of digits 0, 1.

In a different direction there is a classical theorem by Borel and Weyl which states that $\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}e(2^n\psi)=0$

Generally, alternate between (2n - 1)! single digits 1 and (2n)! pairs of digits 0, 1. It is easily seen that the two sets $S[\psi] = T[\psi]$ contain at least two distinct limit points, hence that $s[\psi]$ and $t[\psi]$ do not exist with this choice of ψ .

for almost all real
$$\psi$$
. Hence by (7) for almost all points $e(\psi)$ on the unit circle for approach along the radius

 $f(e^{-t+2\pi i\psi}) = o(\log(1/t)).$

In the neighborhood of the unit circle
$$f(z)$$
 oscillates violently as is clear

from tabulating its values. The function has exactly one real zero $\neq 0$ at

-0.6586268,

$$0.120\ 314\ 8\pm i.0.934\ 605\ 9, \ 0.391\ 862\ 7\pm i.0.898\ 257\ 6, \ -0.685\ 206\ 2\pm i.0.670\ 534\ 1.$$

It is highly probable that f(z) has zeros in every neighborhood of the unit circle, but I have not proved this.

REFERENCES

1. E. Kummer, "Collected Papers," Vol. 1, p. 583-629, Springer-Verlag, Berlin/New York,

- 1975. 2. I. L. Fuchs, Über die Perioden welche aus den Wurzeln der Gleichung $\omega^n = 1$ gebildet
 - sind, wenn n eine zusammengesetzte Zahl ist, J. Reine Angew. Math. 61 (1863), 374–386.
- Printed by the St. Catherine Press Ltd., Tempelhof 37, Bruges, Belgium