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Over 50 years ago, when I was his student at the University of Frankfurt
a.M., C. L. Siegel explained to me how to apply Mellin’s integral e~* = (1/2#i)
x [ I'(s)t=* ds, where the integration is over a line parallel to the imaginary axis
and to the right of s = 0, to the study of the function f(z) = 2::_0 2" in the
neighborhood of roots of unity on the complex unit circle | z | = 1. I later could
obtain similar results by means of Poisson’s or Euler’s summation formula. In the
present note I return to this old problem and obtain estimates by means of a
very elementary method. It has the further advantage that it allows the study of
f(z) in the neighborhood of points on the unit circle which are not roots of unity.

1. Let z be a complex variable. The power series

fo =y

converges and defines a regular function when = lies in the unit disk

bzl <1,

but it cannot be continued beyond this disk. For let

€ = e2mik/2",

where m and k are integers such that m > 0 and 0 << k << 2™ — I, be an
arbitrary 2™th root of unity. Then

o)=Y @ Y

n=m

if z = erand 0 << r < 1, and here the first sum remains bounded while the
second one tends to -+ oo as r tends to 1. Therefore all the 2™th roots of unity
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are singular points of f(z), and since these roots of unity are everywhere
dense on the unit circle | z | = 1, this circle is a natural boundary for f(z).

We shall now make this well-known result more precise by estimating how
f(z) behaves when z approaches the unit circle.

2. For this purpose write z in the form
z = et+ei
where 7 is a positive number and ¢ a real number. We are interested in the
behaviour of f(z) as t, for arbitrary ¢, tends to 0 and may therefore, without
loss of generality, assume that already

0 << L

Let, as usual, [x] denote the integral part of the real number x. Then associate
with 7 the nonnegative integer

[ log(l/1) 7.
v- (), »
hence
INp <1 < 2N, (2)

The power series f(z) can be split into the two sums

where
N:l ©
fO =Y & and S =Y
n=0 n=N
For the terms of fi(z),
22 s 2L g2 o g2 (=2t ),

so that

| sz‘ A

Now for real x,

e* = 1+ x. (3)
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Therefore

1 —2n < e < 1,

whence
0 << 1 —e2" < 2y,

It follows then from (2) and (3) that

N-1 N-1
file) = Y e <Yy 2 =¥ =D <1 (4)
n=0 n=0

Next,

0

| (2] < z et < Z e—2Nkt — e“th(l - e"ZN‘)"I — (eth — D,
n=N k=1
where by (2) and (3),
et — 1 = 2N = 1)2.
It follows that
| fo(2)] < 2. &)

On combining the estimates (4) and (5), the following result is found.

THEOREM 1. Let t and ¢ be real numbers where 0 <t <1, and let N be
the nonnegative integer defined by (1). Then uniformly in t and ¢>,

[for Y | <3 ©)

n=0

I have not tried to replace the constant 3 on the right-hand side by the best
possible constant.

3. The definition (1) of N implies that

N~ log(/)

log2 ~
and so it follows from (6) that
| log2 o ian _L o L

uniformly in ¢z and ¢ if 0 <t < 1.
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This equation suggests the following notation. In general, as ¢ tends to 0
through positive values, or equivalently, as N tends to infinity, neither the
expression on the left-hand side of (7) nor the first term on the right-hand side
of (7) needs tend to a unique limit. Therefore, for each fixed value of ¢, denote
by S(¢) the set of all possible limits of

log 2 Ctidi
"latgﬁ/—tjf (e=t*)

as t — 40, and similarly by T(¢) the set of all possible limits of

as N — oo. The relation between ¢ and N ensures then that always

S(¢) = T($). ®)
However, exceptionally it may happen that the ordinary limit

log2

zl;+0 log(1/t) e, = 5(9) sa,

or the ordinary limit
N-
2" i —
}vlggo }; e, t(¢) say,

does in fact exist. If this is so, then both limits exist simultaneously, and
s(p) = 1(¢). ®)
The function f(z) satisfies the functional equation
f2) = () + =
From this it follows immediately that
SQ2¢) =S(¢) and  TQ4) = T(¢), (10)
and if s(¢) and #(¢) exist, also

52¢) =s(¢)  and  1Q2¢) = 1(¢). (1D
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In particular,

5(0) = 1(0) = 1. (12)

4. It is convenient to replace ¢ in the last formulas by 27 where i
is a further real number because the exponential function of

() = exmiv
has the period 1. Further put
S[p] = SQmyp), TPl = TQmp), slP] = sQmyh), tly] = 12mh),

so that always

Sl = Tll,

and that
s[yp] = 1]
if these limits exist.

5. In the special case when i is a rational number, we can easily show
that #[:/] and hence also s[4/] exist and determine their common value. Put

= plg,
where p and ¢ are integers such that
0<p=<qg—1, (pg) =1L
If ¢ is a power of 2, it follows from (11) that

tlplq] = 1. (13)

More generally, if ¢ = 2*Q is the product of a power of 2 times an odd
integer Q, by (11)

tlplql = 1[p/Q]. (14
Tt suffices therefore to study the case when the denominator

q is odd.
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Denote by
r=¢(q)

Euler’s function of ¢, so that by Euler’s theorem

2" =1 (mod q),
hence

eQ2mplq) = e2"plq)  if m = n (mod gq).
Hence, on writing the integer N as
N = Mr + m,
where M and m are integers such that

M =0 and 0o<im<r—1,

then
S e@plg) — MY epla) Y e@plg),
7=0 n=0 n=0

where we have used that e() has period 1. In this formula the second sum
has at most r terms and so its absolute value cannot exceed r. Further, as N
tends to infinity, M/N has the limit i/r. It follows that s[p/q] and ¢[ p/q] exist
and are given by

stolal = dplal =+ Y. el (19)

where r = ¢(q).

The finite sum on the right-hand side of this formula, when different from
zero, is a Gaussian period from the theory of cyclotomy. (See Kummer [1]
and Fuchs [2])

6. When ¢ = 2m¢s is not a rational multiple of 27, s[3/] and ¢[]
need not exist. A simple example is given by the number

0

‘p = Z (Iﬂz—n’

n=1

where the coefficients d,, are digits 0 and 1 defined as follows. First put 1! = 1,
digit d, = 1, then 2! = 2 pairs of digits 0, 1 so thatd, = d, = 0,d, = d; = 1.



K. MAHLER

Then put again 3! = 6 single digits 1, followed by 4! = 24 pairs of digits 0, 1.
Generally, alternate between (2n — 1)! single digits 1 and (2r)! pairs of digits
0, 1. It is easily seen that the two sets S[4] = T[] contain at least two
distinct limit points, hence that s[+s] and #[/] do not exist with this choice of .

In a different direction there is a classical theorem by Borel and Weyl which
states that

1 N-1

lim ¥ Y e2m)) =0

N-
n=0

for almost all real . Hence by (7) for almost all points e(y) on the unit circle
for approach along the radius

f(ent"} 27ri¢') = ()(log(l/t))'

In the neighborhood of the unit circle f(z) oscillates violently as is clear
from tabulating its values. The function has exactly one real zero +0 at

—0.658 626 8,
and I found three pairs of complex roots

0.120 314 8 + i.0.934 605 9,
0.391 862 7 -+ 1.0.898 257 6,
—0.685 206 2 +- i.0.670 534 1.

It is highly probable that f(z) has zeros in every neighborhood of the unit
circle, but [ have not proved this.
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