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On two definitions of the integral of a p-adic function
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In memory of Pawl Turdn

In his basic paper on functions of a p-adic variable Dieudonné [1}],
introduced = special kind of integral (primitive) of a continuous function.
A completely different definition of such an integral was more recently
given by M. van der Put (see A. C. M. van Rooij and W. H. Schikhof [2]).
The aim of this note is to show that these two definitions lead to the same
result. This is rather surprising because there is a large set of non-constant
p-adic functions of derivative 0.

Since it simplifies the discussion, we shall study the two kinds of
integrals for the class of functions f: J — @, where p is any positive rational
prime, @, is the field of p-adic numbers, and J = {0,1,2,...} is the
set of all non-negative rational integers. The set J is not closed, and its
p-adic closure is the set I = {& € Q,; |v|, < 1} of all p-adic integers which
is compact.

1. Let f: J — @, be an arbitrary function on J. The two integrals
of f are defined by the following constructions.
Write @ edJ in the canonie form as
T o= xyto,pFepi-...
where @,, @, ¥,, ... are digits 0,1,..., p—1. At most finitely many of
these digits are distinet from 05 80, if @ 3 0, let @, # 0 be the non-vanishing
digit of largest suffix s. Firstly put

so that
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The Dieudonné integral of f is now defined by

D(») = Z (m(nﬂ) - m(n))f(a;(n)) .

g= 1

Since the terms of this series vanish for » > s, there is no problem of
convergence. One can show that, whenever f is continuous at a point «,
of J, then D’(x,) = f(#), as required for an integral.

2. Let mn be any integer in J. With m we associate a positive integer M
where

M =1 i m =0,
while for m > 1 the integer M is chosen such that

pll1'~l <m <pll1_1'

Denote by S(m) the ball consisting of all # € J for which

p -M
]'I/“—mlpgp ’

and by X(«z, m) the characteristic function of 8(m) defined by

1 it 2e8(m),

X(x,m) = |0 otherwise.

It can be proved that every function f: J — (), has a unique van
der Put series

fl2) = meX(fv, m) for all wed.
m=0

Here the coefficients b,, can be determined by the formulae

b _Jf(m) £ m=0,1,...,p—1;
™ f(m) —f(m—~q(m)) it m>p.
Sinece

X(z,m) =0 if =z<m,
the van der Put series for f(x) breaks off after finitely many terms, and

there is again no problem of convergence.
In the special ease when f(x) is the function #, we obtain the series

» == Zq(m)X(x, m).

n=0
Once the van der Put series for f(2) is known, its van der Put integral
is defined by the development

P(r) = Z‘ b, X (v, m)(z—m).

=0
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Also this integral satisties the relation P’(2,) = f(#,) at every point x, € J
at which the funection f is continuous, as it should be.

3. Without any restrictions on f we can now prove the following
result.
TaHEOREM 1. For every function f: J —@,,

D(x) =P(x) for all wcd.

Proof. The van der Put series for f(x) shows that it suffices to
prove this theorem only for all the eharacteristic functions

Denote therefore by D(x, m) and P(x, m) the Dicudonné and the van
der Put integrals of X (2, m); we must prove that

D(x,m) = P(x,m) for all xed.

This will be done by evaluating these two integrals explicitly, and we
shall begin with the more difficult funetion D(xz, m).

Let 2 be an arbitrary element of J so that also 2™ e J for all n > 1.
If X (2™, m) =0 for all » > 1, then D(x, m) = 0; we exclude this casy
case. There is then a smallest integer N = 1 such that 2™ e §(m). Then

[(I/‘(‘V) -M

—ml, < p

and therefore there is a rational integer x* such that

2™ = - pMay®,

Here

pM 1<m leI

from which it follows that z* cannot be negative because then

M <m—pM < 1,

contrary to ™ e J. Therefore either

(1) 2™ = m,
or
() o™ =g p M p Tt
Now
Y oo , N—-1
™ = b wp- .. oy p

<@-U+@-Dp+ ... +@-1p" < p¥ -1
Hence, in the case (2),
A < (V)

P <p?
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and therefore N > M --1. It would then follow that
o™ = g™ L g pM L oy Y,
and. therefore

lx

R

whence also

@0 —ml, = (0 =2 ™) + (2 —m)), < p~.

Thus # e §(m), contrary to the minimum hypothesis for N.
Therefore the case (1) holds, and

(3) 2N = m.
We assert that moreover
(4) N =M.

For, if ¥ > M, the proof just given leads to a contradiction; if, however,
N < M, then

QO < m(x’V) — W < pi\v -1 <p —1 < p];[_

and this likewise is false.
On account of (3) and (4) we can now prove that exactly

2 e S(m) for all n>= M.

For if n > M --1, we have again

n—1

o™ =M gy p™ Lt p
and therefore

'l‘(") _x(M)lp — l.’v(")-—mlp<p'M,

as asgerted.
The integral D(x, m) can now bLe determined and is found to have
the value

{ oo
‘ % (@D gy sl = p—o™ =p—m if  2eS(m),
D(w, m) = | 53,
. bl / P =M
i 0 otherwise.

For 2" beconmes equal to # as soon as # is sufficiently large.
Since by definition also Pz, m) = X (z, m)(x—m), we have proved
the theorenn.

4. From any integral of the arbitrary function f(x) we obtain others
by adding anyv function the derivative of which vanishes identically.
In the present p-adic case there are very many such almost-constauts.
For instanece, asx C. 8. Weisman has proved, every function

o
4‘:’ ﬁmX(a}? HE')’

==
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where
I m|B,l, =0,
M0
has evervwhere the derivabtive 0.
Sinee there iy then such a great choice of possible integrals of f(a),
the question may be asked whether the speeial integral D(wz) = P(w)
has any distinguishing properties.
I obtained one such property. Write f(») and P(2) as interpolation
series

. O x . N o )
fle) = 21 a, (n) and D) = 2‘:‘ A, (n) .
N=14 7=

Then the coefficients 4, of the integral can be expressed as linear
forms

n—1

(5) -An = Z Con O (’ﬁ} 1)
m=90

where the coefficients c¢,, are rational integers. This is quite different
from the position for functions of a real variable where, e.g.

TJoe=) 3= ) o

with fractional rational coefficients. In the p-adie case the Dieudonné-van

der Put integral of (Z) is a rather more complicated infinite interpolation

series
o0 /m
Z Can (n) :
n=1

I shall establish and study the formulae (5) elsewhere.
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