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Proof of a general inequality connecting point sets with lattices in a space of
Laurent series.

In 1948 Chabauty [1] and Rogers [2] simultaneously and independently
proved the inequality

A(S) [ ma(S.4) <27 d(4)

k=

for the successive minima m,(S, A) of an arbitrary point set S relative to any
lattice 4 in real n-dimensional space R". Both Chabauty [1] and Mabhler [3]
proved independently that the constant factor 2"~ "/2 is best possible.

We shall now establish the analogous inequality

A(S) ["1 m(S, A) < 2" d(A)
k=1

for point sets S and lattices A in the n-dimensional space F" with coor-
dinates in a field F of formal Laurent series in one indeterminate. It will,
however, be assumed that

0<4(S)< o and 0<m(S,4) < o (k=1,2,.., n).

The proof is similar to that by Rogers in the real case, but since the distance
in F* arises from a discrete non-archimedean valuation, certain changes are
necessary. The quantities A(S), m,(S, A), and d(A) will be defined in the
text. Again the constant factor 2" will be shown to be best possible.
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Let f be any field, z an indeterminate, f|z] the ring of polynomials and
[f(2) the field of rational functions in z with coefficients in f.
A special non-archimedean valuation |x| on the field f(z) is given by'

10| = 0; |x|=2%"P for x=#0.

Here N and D are the degrees of the numerator and of the denominator of
the rational function x, respectively. This valuation is discrete, and any
collection of its values greater than a positive constant contains a smallest
element.

Let F be the completion of the field f(z) relative to the valuation |x|. The
elements x of F can be written as formal Laurent series

j= o

with coefficients a; in f. Here r may be any integer <0,=0, or >0. When
x =0, all coefficients g, are zero; while for x # O the integer r will be chosen
such that a, # 0. The continuation of the valuation | x| from f(z) to F is now
defined by

[0]=0; |x|=2" if x+#0.

We define the integral part x| and the fractional part (x) of any element

x of F by
r ) -1 )
[x]= ) a;z’ and x)= N a;z

i=0 J= o

With this notation for every x in F,

x=[x]+ @), IxleSlz) <

2

Denote by n a fixed positive integer and by F" the n-dimensional space of
all points or vectors

X = (X yeees Xp)s ‘ Y= (Vi Vo) 0= (0,..., 0),

D

"'In Mabhler [3], I defined the valuation |x| instead by |x| = e"
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etc., with coordinates (components) in F. The point 0 is the origin of F" and
plays a specialised role in the theory.

As usual the sum x + y and the difference x —y of two points x and y in
F™ are defined by

X+y=0x+ Vo X, +V,) and X—Y=(X; = Vi X, — V)
If further ¢ is any element of F, then tx denotes the point
X = (X ,0y IX,).
A norm |x| for the points x in F" is defined by
Ix| = max(|x, ..., | X, ]).
It has the properties
[x +yl<max(x|,[y]).  [ax][=[][x]
The expression
p(x,y) =[x —y]

represents a distance in F" and changes this space into a metric space, with
all the usual topological implications.

3

The points x'V,..., x™ in F" are said to be linearly dependent (viz., over
F) if there exists elements ¢,,...., £,, of F not all zero such that

x4 ,x =0,

and they are otherwise called linearly independent. Further x is said to be
linearly dependent on xV....,x"™ if elements s,,..., s, of F exist such that

x=g5x" + ... 45, x".

If no such s,,..., 5,, exist, then x is called linearly independent of x'",...,x'"™.
If the m points x'V,...,x"™ are linearly independent, and if the further
point x is linearly independent of x'"....,x", then the m + 1 points x,
xM,..., x" are linearly independent.
A set of exactly n points

X5 = (Xp 1 s Xpn) (k=1,2,.,n)
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in F" is linearly independent if and only if the determinant

X X
D(x"V,..,x") =

n

a1t Xan

is distinct from zero.
Any n+ 1 points in F" are linearly dependent.

4

Let S be an arbitrary point set in F". If f is any element of F, then tS
denotes the set of all points

X, where x & S.

The largest number of linearly independent points of S is called the
dimension of S and denoted by J(S). We put 6(S)=0 if S is empty or
consists of the single point 0. In all other cases §(S) is positive and satisfies

1 <o(S)<n.
It is obvious that
o(S)=9d(tS) if t+#0liesin F.

Of particular importance are two kinds of point sets, the linear manifolds
M and the lattices A.
A linear manifold M is a nonempty point set in F" with the following two
properties:
(a) IfxeMandy€ M, then alsox+y€E M and x —y € M.
(b) If x€ M and ¢ € F, then also 1x € M.

The second property implies that all linear manifolds contain the origin 0. If
M contains other points x*...., x!™, then also all points

x4, x where .., 1, € F,

belong to M, and it is clear that §(M) > 1. There exist now d(M) =9 linearly
independent points x‘"....,x® in M such that M consists exactly of the
points

x4 g x ) where  f,,.., 15 € F.
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It follows that

tM=M for every t+#0inF.

5

A lattice A in F" is a point set with the following four properties:

(A) Ifx€EAandy€ A, thenalsox+yE A and x—y€E A.
(B) If x&€ A and u € f|z], then also ux € A.
(C) A contains n linear independent points; thus d(A4) = n.

(D) There exists a positive number ¢ such that
x| >¢ for every point x # 0 of A.

It follows from (B) that the origin 0 belongs to every lattice.
A set of n linearly independent points x'",..., x" of A is called a basis of
A if every point x of A can be written in the form

x=u x4+ +u,x", where  u,...,u, € f|z].

LEMMA 1. Every lattice has a basis.

Proof. Choose for x'" a point of A distinct from 0 such that x| is as
small as possible. Next, if 2 < k < n and if the points x'".....x* " of A have
already been selected, choose for x*’ a point of A which is linearly
independent of xV,...,x*~ " and has the property that |x*’| is a minimum.

The n lattice points x”,..., x' so defined evidently satisfy

e <X L <),

We assert that they form a basis of A.
For consider an arbitrary point x of A. This point can certainly be written
in the form

x=1t,xY 4+ 4, x", where f,,..,1, € F.
Put
xF = [t ]x" g, | x™ and xFF = (1 )xPD 4 o+ (1,)x ",
Then

X =x* 4 x*¥*
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and
()€ flz], W<y (k=12..n)
Therefore, by properties (A) and (B), x* and hence also x** belong to A.
The assertion will be proved if we can show that x** =0, or equivalently,
(1) =+ =(t,)=0.

If this were false, there would exist a suffix & such that

(t)£0, ()= =(t)=0,
so that x** would be distinct from 0 for k=1, but would be linearly

independent of x"...., x* =V if k > 2. However,

IR = (1) x D 4 () x P <2 P max((x Y [xP)) < xR,

contrary to the definition of x*.

6

With every basis x",...x" of A we can associate the determinant

D(x'",...,x"); we know that it does not vanish.

LemMa 2. IfFx"..,x" and y'"...., y'™ are two bases of A, then

DX, ™) = [D(y ey y ).

Proof. There exist two nXn matrices (U )y i 1.2

Onidnk—1.2..... With elements u,,, v,, in f]z] such that
1 1
W =gy x4 o, x™ and X =y, y O gy, g™

y
(h,k=1,2,.,n).

Denote their determinants by U and V, respectively. Then
D(y",...y™ =U-Dx",.,x"),
D(xV, ., x")y=V .- D(y",..y"™),

from which it follows that
Uyv=1.

and
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Since U and V are polynomials in f|z|, U and V necessarily lie in f and are
not equal to zero, hence satisfy

\Ul=V|=1.

From this the assertion follows immediately.
The lemma implies that if we put

d(A) = |D(x.... x"™),

then d(A) does not depend on the special basis x'",....x‘” of 4. We call
d(A) the determinant of A. This determinant is always positive and equal to
an integral power of 2.

7

From now on pairs (S, 4) of a point set S and a lattice A in F" will be
considered. The lattice is said to be S-admissible if none of its points distinct
from 0 belongs to S. If there are no S-admissible lattices, write

A(S) = co.
Otherwise define 4(S) as the lower bound
A(S)=infd(A)

extended over all S-admissible lattices A.

Possibly A(S) is equal to 0; this happens when there are S-admissible
lattices A4 with arbitrarily small determinant d(A).

There remains the case when

0 < A(S) < oo.

Now the lower bound 4(S) is attained, and there is at least one S-admissible
lattice A satisfying

d(A) = A(S).

Such a lattice is called a critical lattice of S.

8

We continue to consider the pair (S, 4) of a point set S and a lattice A4 in
F". Let k run over the integers from 1 to n. Denote by X, the set of all
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integers N for which the set zVS contains k linearly independent points of A.
It is obvious that

X ox,o.s DX, (1)
If Z, is empty, write
N, =+ and m (S, A) =2 = + 0.
If X, contains a sequence of integers tending to —oo, write
N,=—w and m (S, A)=2"=0.

If neither of these two cases holds, then X, contains a smallest integer, N,
say. Now put

m(S, A) = 2",
so that
0 <m(S,A4) < co.

In this third case the set z¥«S, but not the set z¥«~ 'S, contains k linearly
independent points of A.
It is clear from (1) that always

—0o LN, <N, < <N, <+, (2)
and therefore
0<m (S, A)<my(S, A4)< -+ <m,(S, 1) < oo. 3)

The numbers m, (S, A) are called the successive minima of S in A.

9

Assume now that all the integers N, are finite, hence that

—00 <N, <N, < <N, <+,
0<m(S,A)<my(S, 4)< - <m,(S, 1) < 0.

4)

For each k=1, 2,..., n form the point set
I, =@M 'SNA)U {0}

which consists of the origin 0 and of all the points of z¥* 'S which lie in 4.
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As was mentioned, the set z¥~'S cannot contain more than k — 1 points of
A which are linearly independent.

Denote by M, the linear manifold in F" which is spanned by the points of
I,. Its dimension d(M,) = J, satisfies the inequality

0<6, <k—1.

Choose an arbitrary x = 0 of I, if such a point exists; this point lies of
course also in M,. Since N, , > N, and since therefore zV++1=¥ € f][z],

VT Ney € .
Further x € z¥« 'S and therefore
2Nk Ny € ZVkii =N N1 G — N1 g

It follows that

MeaNix eI, .
This relation implies that
M NM e M.
On the other hand M, is a linear manifold and therefore
2NN, = M,
Therefore M, < M, , , and hence
McM,c...cM,.

From this set of relations we can deduce that A4 has a basis x'",..., x""
such that the manifolds M, is for every k spanned by the points

0, xV,..., x®,

10

From this basis x",..., x™ of A4 we derive now a new lattice A4* with the
basis

XD = 7Nt Iy (D KO =Nt Ly @) O =Nyt ()
and therefore with the determinant

d(A*) =2V N N g(g), (5)
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LEMMA 3. The lattice A* is S-admissible.

Proof. Let the assertion be false, i.e., let there exist a point X # 0 which
belongs to both S and A *. In terms of the basis of A*,

X = u‘x(l) 4ot unX(n)’
where u,,..., u, are polynomials not all zero in f|z]. Assume, say, that
Uy # 0, Uy =Upp==u,=0.
The new point
Y :sz—IX — ZN,(—N,ulx(l) + szsz uzx{z) + + ukx(k)
belongs to the original lattice A4 because the coefficients
2NNy NNy

lie by Ny <N, < - <N, in the ring f[z]. It is further obvious that Y
belongs to the set z¥<'S. Hence Y is a point of I, and so also a point of
M,. However, by u,+ 0, the point Y is linearly independent of the k — 1
basis points x'",..., x** ", from which by §, <k — 1 it follows that Y is also
linearly independent of the points 0,x‘",...,x%% which span the linear
manifold M,. Hence a contradiction arises, proving the assertion.

The main result of this paper follows now at once.

THEOREM 1. [f the set S and the lattice A satisfy condition (4), then the
Sollowing inequality holds:

AS) ] mu(S, A)< 2" d(A).

k=1
Proof. Lemma 3 implies that
d(A*) > 4(S).
On substituting here for d(A*) its value (5) and noting that 2V« = m,(S, 1)
for all k, the assertion is obtained immediately.

Theorem 1 shows in particular that if (4) holds, then 4(S) < co. In fact, it
suffices to assume that N, and therefore also m,(S, A) are finite. For then no
point of A distinct from 0 lies in z¥1~'S so that A is z*'~'S-admissible.
Hence the lattice z ™' A is S-admissible and therefore 4(S) < oo.
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It is obvious that every bounded set S has admissible lattices and hence
satisfies 4(S) < oo. There is also no difficulty in constructing unbounded sets
with the same property.

The successive minima m,(S, A) depend on both the set S and the lattice
A and they may well be equal to oo. Thus, when S lies in a linear manifold
M of dimension é < n — 1, then clearly for every lattice A,

ms (S, A)=myz (S, A)=-=m, (S, 1) = c0.

However, the following simple result holds.

THEOREM 2. If S has at least one interior point, then
m(S, 1) < (k=1,2,...,n)

JSor all lattices A.

Proof. To the interior point of S, X say, there exists a positive number C
such that all point x in F" satisfying

x - X|<C
belong to S. Hence, for every integer N, all points x in F" satisfying
Ix —z2"X|L2"C

lie in the set zVS.
Denote now by x'"..... x"" a basis of 4 and put

e =max(|x"|,.... [x"]);
further choose N so large that
2%C > e

We assert then that the set zVS contains n linearly independent points of A,
so that the assertion holds. For just as in the proof of Lemma | we can find
first a point x(0) of A satisfying

[x(0) — 2¥X| < ¢/2,
and then the n further points x(k) of A defined by

x(k) = x(0) + x® (k=1,2,..,n)
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have the property
|x(k) — z"X]| < ¢ (k=1,2,.., n).
All n + 1 lattice points x(0), x(1),..., x(n) lie therefore in z*S. But since

x® = x(k) — x(0) (k=1,2,.,n),

certain »n of these lattice points are linearly independent.

I know of no similar simple condition under which one or more of the
successive minima m,(S, A) are distinct from zero. This problem is for
unbounded sets S connected to quite difficult questions in Diophantine
approximations.

12

Let us finally prove that the factor 2" in inequality (I) is best possible. The
proof is an immediate consequence of
THEOREM 3. The set S of all points x = (x,,..., x,) satisfying
x| = max(x, e |x,[) < 1
has the property that
A(S) =2". (6)

Let us for the moment assume that this theorem is true, and choose for A
the lattice with the basis

e = (1,0,.,0),e? = (0, L...., 0),..., e™ = (0, 0,..., 1)

and hence with the determinant d(A)= 1. These n basis points belong to S,
but not to z 1S therefore

m (S, 4)=1 (k=1,2,..,n),

which shows that (I) holds with equality.

Proof of Eq. (6). We apply results from Mahler [3]. In the notation of
this paper, S is a convex body of volume V = 1.
Let A be an arbitrary lattice of basis x'V,..., x'”, where

X5 = (X1 geees Xp) (k=1,2,..,n)
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and determinant
d(A)=|D(x",...,x')|. (7)
The general point x of A has the form
x=u x4+ o +u,x", where u,,..,u, € f|z].
We put
u= (., U,)

and consider the linear mapping in F" from u to x. In the coordinates of u
the lattice A is transformed into the lattice A* of basis e‘",..., e"™. The
mapping from A to A* has the determinant D(x‘",...,x"”) which occurs in
(7). The function |x| takes in the new variables u/,..., u, the form

Ix|= max fupxtee tuxl = ¥) o say.

Here W(u) is a convex distance function in the terminology of Mabhler [3],
and the corresponding convex body K of all points u satisfying

Pu) <1
has by my paper the volume
V=|Dx",...,x") '=dA) "

Now, by Section 9 of |3], there exist n points u'",..., u"” of determinant 1
with coordinates in f[z] (i.e., these points form a basis of A *) such that

|| Y@*) =V "'=d4). (8)
k=1
The coordinates of these points are, say,
u® = (uy | ey tiy,) (k=1,2,.,n).
We derive from them the points

X(k):uklx(1)+ -}-iknx(") (k: 1,2,...,1’[)

which form a basis of the original lattice A.
- By (8), this basis now satisfies the equation

[ XX X = d(a).

Here each of the factors |X‘V|, | X®|,...,|X‘”| is an integral power of 2. If
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now d(A)< 2", then at least one factor | X*’| does not exceed 1 and hence
X® lies in S. But X® is certainly distinct from 0; therefore A is not S-
admissible.

It follows that A only then can be S-admissible if d(A4) > 2", giving the
assertion because the lattice of basis ze'"...., ze™ and determinant 2" is S-
admissible. This proves the assertion.
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