Laurent series.

On a Theorem in the Geometry of Numbers in a Space of Laurent Series

Kurt Mahler

Mathematics Department, Research School of Physical Sciences, Australian National University, Canberra, ACT 2601, Australia

Communicated by the Editor
Received March 3, 1982

Proof of a general inequality connecting point sets with lattices in a space of

In 1948 Chabauty [1] and Rogers [2] simultaneously and independently proved the inequality

$$\Delta(S) \prod_{k=1}^{n} m_k(S, \Lambda) \leqslant 2^{(n-1)/2} d(\Lambda)$$

lattice Λ in real *n*-dimensional space \mathbb{R}^n . Both Chabauty [1] and Mahler [3]

for the successive minima $m_{\nu}(S, \Lambda)$ of an arbitrary point set S relative to any

proved independently that the constant factor $2^{(n-1)/2}$ is best possible. We shall now establish the analogous inequality

$$\Delta(S) \prod_{k=1}^{n} m_{k}(S, \Lambda) \leqslant 2^{n} d(\Lambda)$$

for point sets S and lattices Λ in the n-dimensional space F^n with coordinates in a field F of formal Laurent series in one indeterminate. It will, however, be assumed that

$$0 < \Delta(S) < \infty$$
 and $0 < m_k(S, \Lambda) < \infty$ $(k = 1, 2, ..., n)$.

The proof is similar to that by Rogers in the real case, but since the distance in F^n arises from a discrete non-archimedean valuation, certain changes are necessary. The quantities $\Delta(S)$, $m_k(S, \Lambda)$, and $d(\Lambda)$ will be defined in the text. Again the constant factor 2^n will be shown to be best possible.

defined by

1 Let f be any field, z an indeterminate, f[z] the ring of polynomials and

collection of its values greater than a positive constant contains a smallest

|0| = 0; $|x| = 2^{N-D}$ for $x \neq 0$.

A special non-archimedean valuation |x| on the field f(z) is given by

Here N and D are the degrees of the numerator and of the denominator of the rational function x, respectively. This valuation is discrete, and any element.

elements x of F can be written as formal Laurent series $x = \sum_{j=-\infty}^{r} a_j z^j$

f(z) the field of rational functions in z with coefficients in f.

with coefficients
$$a_j$$
 in f . Here r may be any integer $<0, =0$, or >0 . When $x=0$, all coefficients a_j are zero; while for $x \neq 0$ the integer r will be chosen such that $a_r \neq 0$. The continuation of the valuation $|x|$ from $f(z)$ to F is now

Let F be the completion of the field f(z) relative to the valuation |x|. The

$$|0| = 0;$$
 $|x| = 2^r$ if $x \neq 0$.

We define the integral part [x] and the fractional part (x) of any element x of F by

$$[x] = \sum_{j=0}^{r} a_j z^j$$
 and $(x) = \sum_{j=-\infty}^{-1} a_j z^j$.

With this notation for every x in F,

$$x = [x] + (x),$$
 $[x] \in f[z],$ $|(x)| \le \frac{1}{2}.$

Denote by n a fixed positive integer and by F^n the n-dimensional space of all points or vectors

2

all points or vectors
$$\mathbf{x} = (x_1, ..., x_n), \quad \mathbf{y} = (y_1, ..., y_n), \quad \mathbf{0} = (0, ..., 0),$$

¹ In Mahler [3], I defined the valuation |x| instead by $|x| = e^{N-D}$.

 $\mathbf{x} + \mathbf{y} = (x_1 + y_1, ..., x_n + y_n)$ and $\mathbf{x} - \mathbf{y} = (x_1 - y_1, ..., x_n - y_n).$

If further t is any element of F, then tx denotes the point

 $t\mathbf{x} = (tx_1, ..., tx_n).$

LAURENT SERIES

etc., with coordinates (components) in F. The point $\mathbf{0}$ is the origin of F^n and

As usual the sum x + y and the difference x - y of two points x and y in

A norm $|\mathbf{x}|$ for the points \mathbf{x} in F^n is defined by

plays a specialised role in the theory.

 F^n are defined by

 $|\mathbf{x}| = \max(|x_1|,...,|x_n|).$ It has the properties

$$|\mathbf{x} \pm \mathbf{y}| \leqslant \max(|\mathbf{x}|, |\mathbf{y}|), \qquad |t\mathbf{x}| = |t| |\mathbf{x}|.$$

The expression

$$\rho(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|$$

$$\rho(\mathbf{x},\mathbf{y}) = |\mathbf{x} - \mathbf{y}|$$

represents a distance in F^n and changes this space into a metric space, with

all the usual topological implications.

3

The points $\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}$ in F^n are said to be linearly dependent (viz., over F) if there exists elements $t_1, ..., t_m$ of F not all zero such that

$$t_1\mathbf{x}^{(1)}+\cdots+t_m\mathbf{x}^{(m)}=\mathbf{0},$$

and they are otherwise called *linearly independent*. Further x is said to be linearly dependent on $\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}$ if elements $s_1,...,s_m$ of F exist such that

 $\mathbf{x} = s_1 \mathbf{x}^{(1)} + \cdots + s_m \mathbf{x}^{(m)}.$

If no such $s_1,...,s_m$ exist, then \mathbf{x} is called *linearly independent of* $\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}$. If the *m* points $\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}$ are linearly independent, and if the further

point x is linearly independent of $\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}$, then the m+1 points x,

 $\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}$ are linearly independent. A set of exactly *n* points

 $\mathbf{x}^{(k)} = (x_{k1}, ..., x_{kn})$ (k = 1, 2, ..., n)

406 KURT MAHLER

in F^n is linearly independent if and only if the determinant

$$D(\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}) = \begin{vmatrix} x_{11} \cdots x_{1n} \\ \vdots & \vdots \\ x_{n1} \cdots x_{nn} \end{vmatrix}$$

is distinct from zero. Any n + 1 points in F^n are linearly dependent.

4

Let S be an arbitrary point set in F^n . If t is any element of F, then tS

denotes the set of all points

It is obvious that

 $t\mathbf{x}$, where $\mathbf{x} \in S$.

The largest number of linearly independent points of S is called the

consists of the single point **0**. In all other cases
$$\delta(S)$$
 is positive and satisfies $1 \le \delta(S) \le n$.

dimension of S and denoted by $\delta(S)$. We put $\delta(S) = 0$ if S is empty or

 $\delta(S) = \delta(tS)$ if $t \neq 0$ lies in F.

Of particular importance are two kinds of point sets, the linear manifolds M and the lattices Λ .

A linear manifold
$$M$$
 is a nonempty point set in F^n with the following two properties:

(a) If $x \in M$ and $y \in M$, then also $x + y \in M$ and $x - y \in M$.

(b) If $x \in M$ and $t \in F$, then also $tx \in M$. The second property implies that all linear manifolds contain the origin 0. If M contains other points $\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}$, then also all points

The second property implies that all linear manifolds contain
$$M$$
 contains other points $\mathbf{x}^{(1)},...,\mathbf{x}^{(m)}$, then also all points

 $t_1 \mathbf{x}^{(1)} + \dots + t_m \mathbf{x}^{(m)}$, where $t_1, \dots, t_m \in F$, belong to M, and it is clear that $\delta(M) \ge 1$. There exist now $\delta(M) = \delta$ linearly

independent points $\mathbf{x}^{(1)},...,\mathbf{x}^{(\delta)}$ in M such that M consists exactly of the points $t_1 \mathbf{x}^{(1)} + \dots + t_{\delta} \mathbf{x}^{(\delta)}$, where $t_1, \dots, t_{\delta} \in F$.

It follows that

(A) If $x \in \Lambda$ and $y \in \Lambda$, then also $x + y \in \Lambda$ and $x - y \in \Lambda$.

A lattice Λ in F^n is a point set with the following four properties:

(B) If
$$x \in \Lambda$$
 and $u \in f[z]$, then also $u\mathbf{x} \in \Lambda$.

tM = M for every $t \neq 0$ in F.

(C) Λ contains n linear independent points; thus $\delta(\Lambda) = n$. (D) There exists a positive number c such that

$$|\mathbf{x}| \geqslant c$$
 for every point $\mathbf{x} \neq \mathbf{0}$ of Λ .

It follows from (B) that the origin $\mathbf{0}$ belongs to every lattice. A set of n linearly independent points $\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}$ of Λ is called a *basis of* Λ if every point \mathbf{x} of Λ can be written in the form

small as possible. Next, if $2 \le k \le n$ and if the points $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k-1)}$ of Λ have

$$\mathbf{x} = u_1 \mathbf{x}^{(1)} + \dots + u_n \mathbf{x}^{(n)}, \quad \text{where} \quad u_1, \dots, u_n \in f[z].$$

LEMMA 1. Every lattice has a basis.

Proof. Choose for $\mathbf{x}^{(1)}$ a point of Λ distinct from $\mathbf{0}$ such that $|\mathbf{x}^{(1)}|$ is as

already been selected, choose for $\mathbf{x}^{(k)}$ a point of Λ which is linearly independent of $\mathbf{x}^{(1)},...,\mathbf{x}^{(k-1)}$ and has the property that $|\mathbf{x}^{(k)}|$ is a minimum.

The *n* lattice points $\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}$ so defined evidently satisfy

$$c \leqslant |\mathbf{x}^{(1)}| \leqslant |\mathbf{x}^{(2)}| \leqslant \cdots \leqslant |\mathbf{x}^{(n)}|.$$

We assert that they form a basis of Λ . For consider an arbitrary point \mathbf{x} of Λ . This point can certainly be written in the form

$$\mathbf{x} = t_1 \mathbf{x}^{(1)} + \dots + t_n \mathbf{x}^{(n)}, \quad \text{where} \quad t_1, \dots, t_n \in F.$$

Put

$$\mathbf{x}^* = [t_1]\mathbf{x}^{(1)} + \dots + [t_n]\mathbf{x}^{(n)}$$
 and $\mathbf{x}^{**} = (t_1)\mathbf{x}^{(1)} + \dots + (t_n)\mathbf{x}^{(n)}$.

Then

$$\mathbf{x} = \mathbf{x}^* + \mathbf{x}^{**}$$

and

408

KURT MAHLER

Therefore, by properties (A) and (B), x^* and hence also x^{**} belong to Λ . The assertion will be proved if we can show that $x^{**} = 0$, or equivalently,

 $[t_k] \in f[z], \qquad |(t_k)| \leq \frac{1}{2} \qquad (k = 1, 2, ..., n).$

If this were false, there would exist a suffix
$$k$$
 such that

 $(t_1) = \cdots = (t_n) = 0.$

 $(t_{k}) \neq 0, \qquad (t_{k+1}) = \cdots = (t_{n}) = 0,$

so that
$$\mathbf{x}^{**}$$
 would be distinct from $\mathbf{0}$ for $k = 1$, but would be linearly independent of $\mathbf{x}^{(1)},...,\mathbf{x}^{(k-1)}$ if $k \ge 2$. However,

 $|\mathbf{x}^{**}| = |(t_1)\mathbf{x}^{(1)} + \dots + (t_k)\mathbf{x}^{(k)}| \le 2^{-1} \max(|\mathbf{x}^{(1)}|, \dots, |\mathbf{x}^{(k)}|) < |\mathbf{x}^{(k)}|,$

contrary to the definition of $\mathbf{x}^{(k)}$.

6

With every basis $\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}$ of Λ we can associate the determinant

 $D(\mathbf{x}^{(1)},...,\mathbf{x}^{(n)})$; we know that it does not vanish. LEMMA 2. If $\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}$ and $\mathbf{y}^{(1)},...,\mathbf{y}^{(n)}$ are two bases of Λ , then

 $|D(\mathbf{x}^{(1)},...,\mathbf{x}^{(n)})| = |D(\mathbf{v}^{(1)},...,\mathbf{v}^{(n)})|.$ *Proof.* There exist two $n \times n$ matrices $(u_{nk})_{n,k=1,2,\ldots,n}$ and $(v_{hk})_{h,k=1,2,\ldots,n}$ with elements u_{hk} , v_{hk} in f[z] such that

 $\mathbf{v}^{(h)} = u_{h1}\mathbf{x}^{(1)} + \dots + u_{hn}\mathbf{x}^{(n)}$ and $\mathbf{x}^{(h)} = v_{h1}\mathbf{v}^{(1)} + \dots + v_{hn}\mathbf{v}^{(n)}$ (h, k = 1, 2, ..., n).

Denote their determinants by U and V, respectively. Then $D(\mathbf{v}^{(1)},...,\mathbf{v}^{(n)} = U \cdot D(\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}),$

 $D(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) = V \cdot D(\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}),$

from which it follows that UV = 1. Since U and V are polynomials in f[z], U and V necessarily lie in f and are not equal to zero, hence satisfy

The lemma implies that if we put

From this the assertion follows immediately.

$$d(\Lambda) = |D(\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)})|,$$

LAURENT SERIES

|U| = |V| = 1.

then $d(\Lambda)$ does not depend on the special basis $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ of Λ . We call $d(\Lambda)$ the determinant of Λ . This determinant is always positive and equal to an integral power of 2.

From now on pairs (S, Λ) of a point set S and a lattice Λ in F^n will be considered. The lattice is said to be S-admissible if none of its points distinct from 0 belongs to S. If there are no S-admissible lattices, write

$$\Delta(S) = \infty$$
.
ower bound

7

Otherwise define $\Delta(S)$ as the lower bound $\Delta(S) = \inf d(\Lambda)$

extended over all S-admissible lattices
$$\Lambda$$
.
Possibly $\Delta(S)$ is equal to 0; this happens when there are S-admissible lattices Λ with arbitrarily small determinant $d(\Lambda)$.

There remains the case when

 $0 < \Delta(S) < \infty$. Now the lower bound $\Delta(S)$ is attained, and there is at least one S-admissible

lattice \(\Lambda \) satisfying

Such a lattice is called a critical lattice of S.

 $d(\Lambda) = \Delta(S)$.

We continue to consider the pair (S, Λ) of a point set S and a lattice Λ in F^n . Let k run over the integers from 1 to n. Denote by Σ_k the set of all KURT MAHLER

 $\Sigma_1 \supset \Sigma_2 \supset \cdots \supset \Sigma_n$.

If Σ_k is empty, write

It is obvious that

$$N_k=+\infty$$
 and $m_k(S,\Lambda)=2^{N_k}=+\infty.$ If Σ_k contains a sequence of integers tending to $-\infty$, write

(1)

(4)

 $N_{\nu} = -\infty$ and $m_{\nu}(S, \Lambda) = 2^{N_{k}} = 0$. If neither of these two cases holds, then Σ_k contains a smallest integer, N_k

say. Now put
$$m_k(S, \varLambda) = 2^{N_k},$$
 so that

so that
$$0 < m_k(S,A) < \infty.$$
 In this third case the set $\pi^{N_k}S$ but not the set $\pi^{N_k-1}S$ contains k linearly

In this third case the set $z^{N_k}S$, but not the set $z^{N_k-1}S$, contains k linearly

independent points of
$$\Lambda$$
.

It is clear from (1) that always

It is clear from (1) that always
$$-\infty \leqslant N_1 \leqslant N_2 \leqslant \cdots \leqslant N_n \leqslant +\infty, \tag{}$$

$$-\infty\leqslant N_1\leqslant N_2\leqslant\cdots\leqslant N_n\leqslant+\infty, \eqno(2)$$
 and therefore

$$-\omega \leqslant N_1 \leqslant N_2 \leqslant \cdots \leqslant N_n \leqslant +\omega,$$
 and therefore

and therefore
$$0\leqslant m_1(S,\varLambda)\leqslant m_2(S,\varLambda)\leqslant \cdots \leqslant m_n(S,\varLambda)\leqslant \infty. \tag{3}$$

and therefore
$$0\leqslant m_1(S,\varLambda)\leqslant m_2(S,\varLambda)\leqslant \cdots \leqslant m_n(S,\varLambda)\leqslant \infty. \tag{3}$$

$$0 \leqslant m_1(S, \Lambda) \leqslant m_2(S, \Lambda) \leqslant \dots \leqslant m_n(S, \Lambda) \leqslant \infty. \tag{3}$$

$$0 \leqslant m_1(S, \Lambda) \leqslant m_2(S, \Lambda) \leqslant \cdots \leqslant m_n(S, \Lambda) \leqslant \infty. \tag{3}$$
The numbers $m_1(S, \Lambda)$ are called the successive minima of S in Λ

$$0 \leqslant m_1(S, \Lambda) \leqslant m_2(S, \Lambda) \leqslant \cdots \leqslant m_n(S, \Lambda) \leqslant \infty.$$
The numbers $m_k(S, \Lambda)$ are called the successive minima of S in Λ .

The numbers
$$m_k(S, \Lambda)$$
 are called the successive minima of S in Λ .

The numbers
$$m_k(S, \Lambda)$$
 are called the successive minima of S in Λ .

The numbers
$$m_k(S, \Lambda)$$
 are called the successive minima of S in Λ .

The numbers
$$m_k(z, T)$$
 are cancer the successive minimal system of

Assume now that all the integers N_k are finite, hence that

For each k = 1, 2,..., n form the point set

 $-\infty < N_1 \le N_2 \le \cdots \le N_n < +\infty$

 $0 < m_1(S, \Lambda) \le m_2(S, \Lambda) \le \cdots \le m_n(S, \Lambda) < \infty.$

 $I_{\nu} = (z^{N_k-1}S \cap A) \cup \{\mathbf{0}\}\$

which consists of the origin **0** and of all the points of $z^{N_k-1}S$ which lie in Λ .

 $0 \le \delta_k \le k-1$.

 Λ which are linearly independent.

 I_k . Its dimension $\delta(M_k) = \delta_k$ satisfies the inequality

Choose an arbitrary $x \neq 0$ of I_k if such a point exists; this point lies of course also in M_k . Since $N_{k+1} \ge N_k$ and since therefore $z^{N_{k+1}-N_k} \in f[z]$, $z^{N_{k+1}-N_k}\mathbf{x} \in A$

As was mentioned, the set $z^{N_k-1}S$ cannot contain more than k-1 points of

Denote by M_k the linear manifold in F^n which is spanned by the points of

Further $\mathbf{x} \in z^{N_k-1}S$ and therefore

 $z^{N_{k+1}-N_k} \in z^{N_{k+1}-N_k} \cdot z^{N_k-1} S = z^{N_{k+1}-1} S$ It follows that

 $z^{N_{k+1}-N_k}\mathbf{x}\in I_{k+1}$. This relation implies that

 $z^{N_{k+1}-N_k}M_{\nu}\subset M_{k+1}.$ On the other hand M_k is a linear manifold and therefore

 $z^{N_{k+1}-N_k}M_k=M_k.$

Therefore $M_k \subset M_{k+1}$ and hence

 $M_1 \subset M_2 \subset \cdots \subset M_{-1}$

From this set of relations we can deduce that Λ has a basis $\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}$

such that the manifolds M_k is for every k spanned by the points

0. $\mathbf{x}^{(1)}$ $\mathbf{x}^{(\delta_k)}$.

10 From this basis $\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}$ of Λ we derive now a new lattice Λ^* with the

basis $\mathbf{X}^{(1)} = z^{-N_1+1} \mathbf{x}^{(1)}, \ \mathbf{X}^{(2)} = z^{-N_2+1} \mathbf{x}^{(2)}, \dots, \ X^{(n)} = z^{-N_n+1} x^{(n)}$

and therefore with the determinant

 $d(\Lambda^*) = 2^{-N_1 - N_2 - \cdots - N_n + n} d(\Lambda).$

(5)

Proof. Let the assertion be false, i.e., let there exist a point $X \neq 0$ which

 $X = u_1 X^{(1)} + \cdots + u_n X^{(n)}$

 $u_k \neq 0$, $u_{k+1} = u_{k+2} = \cdots = u_n = 0$.

where $u_1, ..., u_n$ are polynomials not all zero in f[z]. Assume, say, that

belongs to both S and Λ^* . In terms of the basis of Λ^* ,

$$\mathbf{x}_{l} = \mathbf{N}_{l} - \mathbf{1} \mathbf{x}_{l} = \mathbf{N}_{l} - \mathbf{N}_{l} - \mathbf{N}_{l} = \mathbf{N}_{l} - \mathbf{N}_{l} = \mathbf{N}_{l} - \mathbf{N}_{l} = \mathbf{N}_{l} - \mathbf{N}$$

 $\mathbf{Y} = z^{N_k - 1} \mathbf{X} = z^{N_k - N_1} u_1 \mathbf{x}^{(1)} + z^{N_k - N_2} u_2 \mathbf{x}^{(2)} + \dots + u_n \mathbf{x}^{(k)}$

$$\mathbf{Y} = z^{n_k - 1} \mathbf{X} = z^{n_k - n_1} u_1 \mathbf{x}^{(n)} + z^{n_k - n_2} u_2 \mathbf{x}^{(n)} + \dots + u_k \mathbf{x}^{(n)}$$

belongs to the original lattice
$$\Lambda$$
 because the coefficients

 $z^{N_k-N_1}u_1, z^{N_k-N_2}u_2, \dots u_n$

$$z^{N_k-N_1}u_1, z^{N_k-N_2}u_2, ..., u_k$$

lie by $N_1 \leq N_2 \leq \cdots \leq N_n$ in the ring f[z]. It is further obvious that Y belongs to the set $z^{N_k-1}S$. Hence Y is a point of I_k and so also a point of

 M_k . However, by $u_k \neq 0$, the point Y is linearly independent of the k-1basis points $\mathbf{x}^{(1)},...,\mathbf{x}^{(k-1)}$, from which by $\delta_k \leqslant k-1$ it follows that \mathbf{Y} is also linearly independent of the points $\mathbf{0},\mathbf{x}^{(1)},...,\mathbf{x}^{(\delta_k)}$ which span the linear

manifold M_k . Hence a contradiction arises, proving the assertion.

The main result of this paper follows now at once. THEOREM 1. If the set S and the lattice Λ satisfy condition (4), then the

$$\Delta(S) \prod_{k=1}^{n} m_{k}(S, \Lambda) \leqslant 2^{n} d(\Lambda).$$

following inequality holds:

Proof. Lemma 3 implies that

 $d(\Lambda^*) \geqslant \Delta(S)$. On substituting here for $d(\Lambda^*)$ its value (5) and noting that $2^{N_k} = m_k(S, \Lambda)$

for all k, the assertion is obtained immediately. Theorem 1 shows in particular that if (4) holds, then $\Delta(S) < \infty$. In fact, it

suffices to assume that N_1 and therefore also $m_1(S, \Lambda)$ are finite. For then no point of Λ distinct from **0** lies in $z^{N_1-1}S$ so that Λ is $z^{N_1-1}S$ -admissible. Hence the lattice $z^{-N_1+1}\Lambda$ is S-admissible and therefore $\Delta(S) < \infty$.

LAURENT SERIES

It is obvious that every bounded set S has admissible lattices and hence satisfies $\Delta(S) < \infty$. There is also no difficulty in constructing unbounded sets

The successive minima $m_k(S, \Lambda)$ depend on both the set S and the lattice Λ and they may well be equal to ∞ . Thus, when S lies in a linear manifold

 $m_{S\perp 1}(S,\Lambda)=m_{S\perp 2}(S,\Lambda)=\cdots=m_n(S,\Lambda)=\infty.$

Theorem 2. If S has at least one interior point, then $m_k(S, \varLambda) < \infty \qquad (k=1, 2, ..., n)$

M of dimension $\delta \leqslant n-1$, then clearly for every lattice Λ ,

However, the following simple result holds.

with the same property.

lie in the set $z^N S$.

for all lattices Λ .

Proof. To the interior point of S, X say, there exists a positive number C such that all point x in F^n satisfying

belong to S. Hence, for every integer N, all points
$$\mathbf{x}$$
 in F^n satisfying

 $|\mathbf{x} - \mathbf{z}^N \mathbf{X}| \leq 2^N C$

 $|\mathbf{x} - \mathbf{X}| \leq C$

Denote now by $\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}$ a basis of $\boldsymbol{\Lambda}$ and put

$$c = \max(|\mathbf{x}^{(1)}|,...,|\mathbf{x}^{(n)}|);$$

C =

further choose N so large that

that

ige mai

We assert then that the set $z^N S$ contains n linearly independent points of Λ ,

so that the assertion holds. For just as in the proof of Lemma 1 we can find first a point $\mathbf{x}(0)$ of Λ satisfying

 $|\mathbf{x}(0)-2^N\mathbf{X}| \leqslant c/2,$

 $2^N C \geqslant c$.

and then the *n* further points
$$\mathbf{x}(k)$$
 of Λ defined by

 $\mathbf{x}(k) = \mathbf{x}(0) + \mathbf{x}^{(k)}$ (k = 1, 2, ..., n)

have the property

KURT MAHLER

 $\mathbf{x}^{(k)} = \mathbf{x}(k) - \mathbf{x}(0)$ (k = 1, 2, ..., n),certain n of these lattice points are linearly independent.

All n + 1 lattice points $\mathbf{x}(0)$, $\mathbf{x}(1)$,..., $\mathbf{x}(n)$ lie therefore in $z^N S$. But since

successive minima $m_k(S, \Lambda)$ are distinct from zero. This problem is for unbounded sets S connected to quite difficult questions in Diophantine

12

Let us finally prove that the factor 2^n in inequality (I) is best possible. The proof is an immediate consequence of

THEOREM 3. The set S of all points $\mathbf{x} = (x_1, ..., x_n)$ satisfying

has the property that

the lattice with the basis

but not to $z^{-1}S$; therefore

which shows that (I) holds with equality.

this paper, S is a convex body of volume V = 1.

Let Λ be an arbitrary lattice of basis $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$, where

$$|\mathbf{x}| = \max(|x_1|, ..., |x_n|) \leqslant 1$$

 $\Delta(S)=2^n$.

 $\mathbf{e}^{(1)} = (1, 0, \dots, 0), \, \mathbf{e}^{(2)} = (0, 1, \dots, 0), \dots, \, \mathbf{e}^{(n)} = (0, 0, \dots, 1)$

and hence with the determinant $d(\Lambda) = 1$. These *n* basis points belong to *S*,

 $m_{\nu}(S, \Lambda) = 1$ (k = 1, 2, ..., n),

Proof of Eq. (6). We apply results from Mahler [3]. In the notation of

 $\mathbf{x}^{(k)} = (x_{k1}, ..., x_{kn})$ (k = 1, 2, ..., n)

(6)Let us for the moment assume that this theorem is true, and choose for Λ

415

(7)

 $\mathbf{x} = u_1 \mathbf{x}^{(1)} + \dots + u_n \mathbf{x}^{(n)}, \quad \text{where } u_1, \dots, u_n \in f[z].$ We put

The general point x of Λ has the form

and determinant

 $\mathbf{u} = (u_1, ..., u_n)$

and consider the linear mapping in F^n from \mathbf{u} to \mathbf{x} . In the coordinates of \mathbf{u}

 $\Psi(\mathbf{u}) \leq 1$

Now, by Section 9 of [3], there exist n points $\mathbf{u}^{(1)},...,\mathbf{u}^{(n)}$ of determinant 1 with coordinates in f[z] (i.e., these points form a basis of Λ^*) such that

LAURENT SERIES

 $d(\Lambda) = |D(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)})|.$

the lattice Λ is transformed into the lattice Λ^* of basis $e^{(1)},...,e^{(n)}$. The mapping from Λ to Λ^* has the determinant $D(\mathbf{x}^{(1)},...,\mathbf{x}^{(n)})$ which occurs in (7). The function $|\mathbf{x}|$ takes in the new variables $u_1,...,u_n$ the form

 $|\mathbf{x}| = \max_{k=1,2,\ldots,n} |u_1 x_{1k} + \cdots + u_n x_{nk}|, = \Psi(\mathbf{u})$ say.

Here $\Psi(\mathbf{u})$ is a convex distance function in the terminology of Mahler [3], and the corresponding convex body K of all points u satisfying

has by my paper the volume

 $V = |D(\mathbf{x}^{(1)},...,\mathbf{x}^{(n)})|^{-1} = d(\Lambda)^{-1}.$

The coordinates of these points are, say,

which form a basis of the original lattice Λ . By (8), this basis now satisfies the equation

 $\prod_{k=1}^{n} \Psi(\mathbf{u}^{(k)}) = V^{-1} = d(\Lambda).$

 $\mathbf{u}^{(k)} = (u_{k1}, ..., u_{kn}) \qquad (k = 1, 2, ..., n).$

We derive from them the points

 $\mathbf{X}^{(k)} = u_{k1}\mathbf{x}^{(1)} + \dots + i_{kn}\mathbf{x}^{(n)}$ (k = 1, 2, ..., n)

(8)

 $|\mathbf{X}^{(1)}| |\mathbf{X}^{(2)}| \cdots |\mathbf{X}^{(n)}| = d(\Lambda).$

Here each of the factors $|\mathbf{X}^{(1)}|$, $|\mathbf{X}^{(2)}|$,..., $|\mathbf{X}^{(n)}|$ is an integral power of 2. If

admissible.

416

REFERENCES 1. C. CHABAUTY, Comptes Rendus 227 (1948), 747-749.

It follows that Λ only then can be S-admissible if $d(\Lambda) \ge 2^n$, giving the assertion because the lattice of basis $ze^{(1)},...,ze^{(n)}$ and determinant 2^n is S-

2. C. A. Rogers, Nederl. Akad. Wetensch. Proc. Ser. A 52 (1949), 256-263.

admissible. This proves the assertion.

- 3. K. Mahler, Ann. of Math. 42 (1941), 488-522.
- 4. K. Mahler, Nederl. Akad. Wetensch. Proc. Ser. A 52 (1949), 633-642.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium