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In my paper (Proc. Roy. Soc. Edinburgh Sect. A 64 (1956), 223-238), 1 gave a
general transfer principle in the geometry of numbers which consisted of inequalities
linking the successive minima of a convex body in n dimensions with those of a
convex body in N dimensions where in general N is greater than n. This result con-
tained in particular my earlier theorem on compound convex bodies (Proc. London
Math. Soc. (3) 5 (1955), 358-379). In the present paper I apply essentially the same
method to prove a new transfer principle which connects the successive minima of a
convex body in m dimensions and those of a convex body in n dimensions with the
successive minima of a convex body in mn dimensions.  © 1986 Academic Press, Inc.

1. Let m>2 and n>2 be integers, let R” and R” be the real
m-dimensional and n-dimensional spaces of all points or vectors

X = (X, Xp) and Y=(Vir Vo)

respectively, and let R be the real mn-dimensional space of all points or
vectors

= (le’ Z12sees Zmn),

where the coordinates

Zs (=12 mk=1,2,..n)

are arranged in lexicographical order. We denote by

u, = (1 0y u,, = (0, 1)
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the m points in R” with just one coordinate 1 and all others 0, by
v, =(1,..,0),.,v,=(0,.., 1)
the analogous points in R”, and by
Wik, (h=1,2,..,mk=1,2,.,n)

the mn points in R”" which have a coordinate 1 at the place A, k and 0 at
all other places. With the usual notation for sums of vectors and for the
product of a vector with a scalar, the points X, y, and z may then be writ-
ten as

Z ke W ke -
1

I Mz
[HagE

m n
X= Z XpUp, y= Z YViVis =
- k=1

h=1 k

Finally, denote by L”, L”, and L™ the lattices of all points in R™, R”,
and R™, respectively, which have integral coordinates. Then the lattice
points u, form a basis of L”, the lattice points v, a basis of L", and the lat-
tice points w,, form a basis of L™ All three lattices have the deter-
minant 1.

2. We introduce now the mapping R” x R” — R™" defined by the
equations

Zie =Xn" Vies (h=1,2,..,mk=1,2,.,n).

We write z=x xy and note that here the order of x and y may not be
altered.

When x runs over the whole space R” and y over the whole space R”,
then z=xxy describes the algebraic manifold in R™, M say, which is
defined by the algebraic equations

ZheZi = ZniZiks hi=12,.,mk j=1,2,., n).

Since u, x v, =w,, for h=1,2,.,m and k=1, 2,.., n, the manifold M con-
tains the mn unit points w,, which together span the space R™".

In the equation z=x xy the coordinates of z are bilinear forms in the
coordinates of x and of y and hence are continuous functions in these coor-
dinates.

3. Denote by
A=(a,) and  B=(by)
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a real non-singular m x m matrix of determinant
a=det(a,)#0
and a real non-singular n x n matrix of determinant
b=det(b;) #0.
We associate with A the non-singular linear transformation of R™ defined
by
X=Ax=(X,,.. X,), where X, =Y a,x;, (h=1,2,..,m)
i=1
and with B the non-singular linear transformation of R” defined by
Y=By=(Y,,.,Y,), where Y,= Y b,y (k=1,2.. n).
j=1

If simultaneously A is applied to x and B to y, then z=x Xy is changed
into

Z=Axx By=XXY=(Z]1, le""’ Zmn)’

where the new coordinates Z,, are again numbered lexicographically and
have the values

L= i Zn: apibiizy, (h=1,2,..,m k=1,2,.,n).
=1 j=1
This is again a linear transformation of R”” defined by
Z =Cz, where C=(c;,4)
and Chigg=uiby, (Mi=1,2,.,mk, j=1,2,.,n).
As is well known, the mn x mn matrix C has the determinant
c=det(cp ) =a"b" #0,

so that also C is non-singular. We shall use the notation C = A x B.

i3]

4. A “body” is a point set with interior points and a “convex body

a closed bounded convex body which is symmetric in the coordinate origin
0= (0,.., 0), and for which o is an interior point.

Let K™ be any convex body in R” and K" any convex body in R". As the
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point x runs over the whole of K™ and the point y over the whole of K",
the product point

Z=XXY (1)

describes a certain point set, X say, which is a subset of the manifold M.
Denote by K™ the convex hull of 2 so that K™ is a convex point set in
R”". We shall use the notation

Kmn — Km X Kn

LEmMMA 1. The point set K™ is a convex body.

Proof. Since the mapping (1) is continuous, both 2 and K™ are boun-
ded closed point sets; further K™, as already said, is convex.
Next, if x is any point of K™, then also —x belongs to K. Now

(—X)Xy= —xXxy.

It follows that if z is any point of K™, then also —z belongs to K™, and
hence K™ is symmetric in o.

Finally, o is an interior point of K”". For both K™ and K" contain the
origins of R” and of R”, respectively, as interior points. This implies that
there exist two positive constants § and ¢ such that K" contains the 2m
points

+d-u, (h=1,2,..,m),
K" contains the 2n points
+ev, (k=1,2,.,n),

and therefore both the set X and the convex body K" contain the 2mn
points

+06°w,, (h=1,2,..,mk=1,2,.,n).

But then, by convexity, K™ contains all points of the form

m n

oe Z z Uik Wi

h=1 k=1

where 1,,, t\5,..., [, denote any real numbers satisfying the inequality

Z Z [tl < 1.

h=1 k=1
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Since the mn points w,, span the space R™", it follows that o is an interior
point of K™ This concludes the proof.

5. Let again A, B, and C be the transformations in Section 3, and
let further K™ = K™ x K". Put

K()ln — AK’”, K()n BKn and K()Inn — CK”W.

Here AK™ is to consist of all points Ax, where x belongs to K™, and
similarly for BK" and CK™. Since we are dealing with affine transfor-
mations, K, K", and K" are again convex bodies, and moreover

omn __ om on
Ko = K" x K.

Next denote by

J(m):J~ Jd‘c, . X s J(n):J...del ...dy",

K™ K"

J(rrz,rl):J..- j d211d212 e dznm

k’VN'I
the volumes of K™, K", and K™ in their respective spaces and by J*",
J°" and J°"" the analogous volumes of K””, K”, and K", respectively.

Then evidently
Jo(m) — aJ(m)’ Jo(n) — bJ(”), and Jo(m,n) — CJ(m,n) — anbmJ(m,n).
Therefore

J()(m)11J()(n)m/Ju(m,n) — J(m)nJ(n)m/J(m.n)
so that this quotient of volumes is invariant under the transformations.

6. Consider first a special case. Denote by G and G” the unit ball
|x| <1 in R” and the unit ball |y| <1 in R” and define a convex body G™"
by the equation

GWH‘I G"’l GII'

This body G is rather complicated and is in fact the convex hull of the
intersection of the unit ball |z| <1 in R”” with the manifold M. Let g,
g™ and g™ be the volumes of G”, G", and G, respectively. These three
volumes depend only on the degrees m and n.

Next let £” be any ellipsoid in R” and E” any ellipsoid in R”, both with
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their centres at the origins of R” and R”, respectively, and let £ be the
convex body in R™ defined by

mn __ m n
E™=FE"xE".

The volumes of E”, E", and E™ will be denoted by ¢, ¢, and """,
respectively.

LEMMA 2. There exists a positive number ¢, depending only on m and n
such that

e(m,n) — cle(m)n . e(n)m.

Proof. There exist two non-singular linear transformations A in R” and
B in R” such that

E"=AG" and  E'=BG"

and therefore

i

Emn — CGWH’I7

where C is derived from A and B as in Section 3. It follows now from Sec-
tion 5 that

e(m) — ag(m) e(n) — bg("), 6’("1‘") — Cg(m,n) — anbmg(m,n),

b

whence the assertion on putting

(m)n ,(n)m

cr=g""/g""g

7. If Sis any point set and s> 0 is a scalar, denote as usual by sS
the set of all points sP where P runs over S. It is obvious that in this
notation, for every convex body K” in R” and every convex body K" in R”
and for any two positive numbers s and ¢, from the definition of K" x K",

SK™ x tK" = stK™.

By the same definition, if K" and K% are two convex bodies in R™, and
K%} and K% are two convex bodies in R,,, such that

K< K%} and Kic K}
and if further

Km=KpxKy and  K3"=Kyx K3,
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then also
Kll‘nn — Krznn.

Let now again K™, K", and K™ = K" x K" be the original convex bodies
in R”, R", and R™, respectively, and let J“, J™) and J"" be their
volumes. Then the following result holds:

THEOREM 1. There exist two positive constants ¢, and ¢ which depend
only on the dimensions m and n such that

C2J(m)l1J(n)m < J(m.n) < C3J(m)”.](”)m.

Proof. By a theorem by John [ 1] there exists in R” an ellipsoid £ and
in R” an ellipsoid E” such that

m- 1/2Em - Km - E™ and no l/'.ZEn cK'c E",
hence that
(mn)fl/2Emn - Kmn — Emn.

Let again J), J Jomm o(m) o(n) olmn) be the volume of K™, K", K™, E™,
E", and E™, respectively. Then m '2E™ has the volume m~ "%,
n '2E" has the volume n "?e"™, and (mn) “2E™ has the volume
(mn)~"2et™" By what has already been proved,

mfrn/Ze(M)g_](m)Se('n), n*"/2e('1)<J(n)<e(n),
(mn) ~mn/2e(m,n) < J(mm) < e(rn.n)‘
Therefore by Lemma 2,
J(m,n)/J(rn)nJ(n)m < e(m.n)(mArn/Ze(m))Hr (n —'n/2e(n))fm < Cl(mn)mn
and
J(m,n)/J(m)nJ(n)m > (mn)7nm/2€(mn)/e(m)rrem)m — C.l(mn)fmn/l.

On putting ¢, = ¢,(mn) "™? and ¢, = c¢,(mn)™", this proves the assertion.

8. To each of the three convex bodies K", K", and K™
corresponds a convex distance function, F"’(x) in R™, F")(y) in R", and
F™m(z) in R™, respectively. Here, e.g., F")(x) is defined by

0< F"™(x)<1 if and only if xe K",
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or more explicitly,
X € sK™ it |s] = FU(x) and X ¢ sK" if Js] < FU(x).
Further,
F"(0)=0, F"(x)>0 if x#o;
FU(sx) = |s| F(x) for all real s and x e R™;
FU X+ X5) < FU(x )+ FU(x5).

Analogous properties are satisfied by the two other distance functions
F"(y) and F""(z), in particular,

0<F"(y)< 1 if and only if ye K",

0< F(z)< 1 if and only if ze K"

LEMMA 3. If xeR" and y e R" and therefore z=x xy e R™, then
F(m.n)(Z)gF(m)(x) F(n)(y).

Proof. The assertion is obvious if x =0 or y =0 and therefore z = 0. Let
therefore x # 0 and y # o so that

F(x)>0 and F'(y)>0.
On putting
XO:F(m)(x) 1 X and y(): F'(/z)(y)— 1 y’

evidently F"(x°)=1 and F")(y°)=1 and therefore x"e K” and y"e K"
On defining z° now by z°=x"xy°,

ZO — XO x y() — I;'(m)(x) —1 I;v(n)(y)fl X X y — F(m)(x) -1 F(n)(y)—l z
Since x"e K" and y" e K", also z°e K™ and therefore F'""""(z°) < 1. But
[y(m.n)(z()) — F(nz)(x) —1 F(n)(y) 1 F("I’”)(Z),

whence the assertion.

9. We combine the results so far obtained with Minkowski’s
theorem on the successive minima of a convex body in a lattice
(Minkowski [4]).

This theorem will be appiied three times, to K relative to the lattice L™
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in R, to K" relative to the lattice L" in R”, and to K" relative to the lat-
tice L™ in R”". By this theorem, there exist then

m linearly independent points x'...., x” in L",
n linearly independent points y',.... y" in L
mn linearly independent points z',..., 2" in L™,

with the corresponding successive minima
p = FR), (=1, 2, m),
i = F(yh), (k=1,2.,.,n),

i = Fmm (gl (I=1,2..., mn),

such that the following properties hold:

(i)
’)/N
(m) (m) (m) - ) ) L. (m) m
0 < p" S pym < oo <l S <2
"
- (
O<,u(]”‘<,ll(2'”< glu;(;”]» ;Té‘/’l)lt(l,lj-../ll‘z’l)gzu’
‘)Hl’l

m.n mn
( ) < 2 .

nn

O < /.ltlm.n) < u{zm.n) < e < #:’/)7,7;11), < J(”L”)‘l.[(l””’) . #

(mmn)!

(ii) If X',..., X" are m linearly independent points in L™, Y'..,Y" n
linearly independent points in L”, and Z'...., Z"" mn linearly independent
points in L"", and if these points are ordered such that

FUNX ) < F(X2) < - < F(X),
FOUYNY < FO(Y?) < - < FU(Y?),
FUr( 2y < Fon(Z2) < - < Fmm(Zmm),
then
FU(X™) = plm, (h=1,2,..,m),
FOYR) > i, (k=1,2.... n),
Fm(Zy = gmn, (=1, 2., mn).

Here, in the inequalities (i), the factors J', J"), and J'"*") are again the
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volumes of the convex bodies K™, K", and K™, respectively. We deduce
from these inequalities that the quotient

q=p{™" e (g ) (g )
satisfies the inequalities

2mn
(mn)!

QN —npnN m
(zm)——n (2n)—m < Jtmen) jlm)—n y(n)—m, qg< pmn <_> <....> .
m! n!

Here apply Theorem 1 to the quotient J"J"™) ~7J" =" and put
ca=(cs(mm)1 2" and  es=(m!) (n))" (e527") L.
We obtain then the following result:

LEMMA 4. There exist two positive constants ¢, and cs which depend only
on m and n such that
Calpy™ - )" (g ) S e
a0 )
10. Let again x" (h=1, 2,..., m) be m linearly independent points in

L™ and y* (k=1, 2,..., n), n linearly independent points in L" at which the
successive minima p{™ and p{" are attained. Then the mn product points

7" = x" x y*, (h=1,2,.,m k=1,2,...n)

lie in the lattice L™ and, moreover, they are linearly independent. For
there are two non-singular transformations A and B as in Section 2 such
that

x"=Au, (h=1,2,.,m) and y*=Bv,(k=1,2,., n).
Further, C = A x B is non-singular, and
7" =Cw,,, (h=1,2,..,m k=1,2,., n),

where the mn unit points w,, span the space R™.
Put

flmm = porny (i) (= 1,2, m, k=1, 2,.., n)

and denote for /=1, 2,.., mn by f{™" the same quantities f 7" ordered
according to size,

FEmS< < s < fi, (2)
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This ordering (which will not be unique if several of the values f{;»") are
equal) establishes thus a 1-to-1 correspondence

I (h k)

between the integers / in 1 </<mn and the pairs of integers (4, k) with
1<hs<m, 1<k<n

From property (ii) of the successive minima u{™™ and from the ordering
(2) it follows that

fimm = gfmm, (I=1,2,.., mn).
On the other hand, by Lemma 3,
f;m,n)z F(m’")(th) < F(m)(xh) F*(n)(yk) :#;,M)/l;(n)-

We obtain therefore the system of mn inequalities
(iii)  pimm < pimudm for 1o (b, k),
from which, on multiplying over all suffixes /, it follows in particular that

pm el < (e ) (e )

which is slightly better than the right-hand inequality given by Lemma 4. A
valid inequality is also obtained if on the left-hand side of this formula the
factor p{™™ is omitted while the right-hand side is divided by the
corresponding product p{™pu!™, where again /< (h, k). On dividing now
the left-hand formula in Lemma 4 by this new inequality, it follows that

(iv) ™ > e, for Lo (h, k),

We have so obtained the following result:

THEOREM 2. There exists a constant c, >0 depending only on m and n,
with the following property: Denote by p\™, (h=1,2,.., m), the successive
minima of the convex body K™ in R™, by u{ (k=1,2,.., n), the successive
minima of the convex body K" in R", and by p\™" (1=1, 2,..., mn), the suc-

cessive minima of the convex body K™ = K" x K" in R™. Let further p{™"
(I=1,2,.., mn), be the mn products

e, (h=1,2,..,m k=1,2,.,n)
numbered in order of increasing size,
p(lm,n) < p(zm,n) < - < P(",',n)

Then
Ca p;m,n) S'u;m,n) < p;m,n) (12 1, 2,.“’ mn).
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Hence in particular,

. (m),, (n) (m.n) (m),, (n) . (m),, (n) (m,m) (m),, (n)
Capy" " S T S 1y Iy, Cally 1S ™S U

mn m

11. By means of Theorem 2 we shall finally prove a property of the
successive minima of convex bodies defined by linear inequalities. The two
special convex distance functions

1:‘{)'71)():): max({xllv-"v [xm{) and F(()")(Y):max(!,VIL---’ |yn|)
generate the convex bodies

Ky Fyxy < in R” and Kg: Fl(y) <1 in R,

which are generalized cubes of side 2 with their centres at the origin of R”
and R, respectively. The product body

Sk __ JTm n
Ki™=K§ x Kj

K mn

in R"" is rather complicated. If FF""")(z) is its distance function, then K
consists of the points ze R for which

Frommzy < 1.
We introduce the further distance function
F:;”"")(Z) =max(|z ], [212]s0r [Z0nl)
and the corresponding convex body
Ky Fimm(z) < 1 in R™,

which is again a generalised cube of side 2 with centre at the origin. It is
casily seen that

K())klnll — K(r)nn
and therefore
Foem(z) < FF(z) for all zeR™. (1)
Further, the origin o is an interior point of K§"". This impiies that there

is a constant ¢, >0 depending only on m and n such that all points z
satisfying

Fym(z) < 1eq
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belong to K&™", hence that
Ky e c K3,

and therefore

FEUmm(z) < cg Fim™"(z) forall zcR™. (11)

12. Denote again by
A=(a,) and B =(h,)

a real m x m matrix and a real n x n matrix, and by

C=AXxB=(c,4) where ¢4, = ay:by;,

the mn x mn matrix formed from A and B. It suffices to consider the case
when all three matrices have the determinants 1,

a=1, b=1, c=a"p"=1.

The four new distance functions

F"(x) = Fim(Ax) in R, F"(y)= F{(By) in R",
and
F*(m.n](z): F(:)k(m,n)(cz) and ];(mm)(z): Fg)m‘”)(CZ) in an

define the convex bodies
K™ F"i(x) <1 in R”, K*: F"(y)< 1 in R”,
and

K*nm: F*(nuz)(l) < 1 and Kmn: [;(m,n)(z) < 1 in Rmn.

Of these bodies K™, K", and K™ are generalised parallelepipeds with their
centres at the origin, but the body

K*mn — Km % KH

is more complicated.
In any case, inequalities (I) and (II) of the last section imply that

Fmmi(z)y < F*U(g) < e F™(z) for all points ze R™.  (III)
With a slight change of notation, let

(m) (n) * (m,n) . (m,n)
ws o o and
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be the successive minima of K™, K", K*™", and K™ in the lattices L™, L",
and L™, respectively. Further denote by

z*! and z! (I=1,2,., mn)

two systems of mmn linearly independent lattice points in L™ such that

primm = prmmgxty - and gl = F(gly o (I=1, 2,.., mn).

Here, by Theorem 2, if p{™" has the same meaning as before,
capim < pFm L pimm - (1=1, 2,..., mn).
Further, by property (ii) of the successive minima,
Fxmm (gl >F*(m.n)(z*/)’ Fonm(gxl) > Fomm (g1 (I=1,2,., mn),
and therefore by (III)
(cafce) Py < (1eg) ™ <pfmm < pkm < pimm (I=1, 2,..., mn).

We thus arrive at the following result:

THEOREM 3. There exists a constant c;>0 depending only on m and n,
with the following property: Denote by A = (a,;) a real m x m matrix and by
B = (by;) a real nxn matrix, and let C be the mnx mn matrix

C=AxB=(c,i) where  Cp ;= ap by
(h=1,2,.,m k=1,2,., n).

Without loss of generality, all three matrices have the determinant 1. Let
wim, ™, and p{™" be the successive minima of the convex distance functions

2 by,

=1

F"(y)= max

k=1,2,.,n

k)

i=1

and

Fm(z) = max

m n
Z Z ChikjZij
1,2,...m

1116112 D ti=1g=1

El

respectively. Denote by p\™™ (I=1, 2,.., mn) the products

wim ), (h=1,2,..m k=1,2,.,n),
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numbered such that

Then
cq py™m < pfmm < pimm, (I=1,2,., mn),
and in particular,

oy St < ™, e < i < .

REFERENCES

1. F. Jonn, Extremum problems with inequalities as subsiduary conditions, in “Studies and
Essays Presented to R. Courant on His 60th Birthday, January 8, 1948” (Courant Anniver-
sary Volume), pp. 187-204, Interscience, New York, 1948.

2. K. MaHLER, On compound convex bodies, I, Proc. London Math. Soc. (3) 5 (1955),
358-379.

3. K. MAHLER, Invariant matrices and the geometry of numbers, Proc. Roy. Soc. Edinburgh
Sect. A 64 (1956), 223-238.

4. H. MINKOWSKI, “Geometrie der Zahlen,” Teubner, Leipzig/Berlin, 1910.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium



