A New Transfer Principle in the Geometry of Numbers

KURT MAHLER

Mathematics Department, Australian National University, Canberra, ACT 2601, Australia

Communicated by the Editors

Received September 20, 1983

DEDICATED TO THE MEMORY OF E. G. STRAUS

In my paper (Proc. Roy. Soc. Edinburgh Sect. A 64 (1956), 223-238), I gave a

general transfer principle in the geometry of numbers which consisted of inequalities linking the successive minima of a convex body in n dimensions with those of a convex body in N dimensions where in general N is greater than n. This result contained in particular my earlier theorem on compound convex bodies (*Proc. London Math. Soc.* (3) 5 (1955), 358–379). In the present paper I apply essentially the same method to prove a new transfer principle which connects the successive minima of a convex body in m dimensions and those of a convex body in n dimensions with the successive minima of a convex body in m dimensions. © 1986 Academic Press, Inc.

1. Let $m \ge 2$ and $n \ge 2$ be integers, let \mathbb{R}^m and \mathbb{R}^n be the real m-dimensional and n-dimensional spaces of all points or vectors

$$\mathbf{x} = (x_1, ..., x_m)$$
 and $\mathbf{y} = (y_1, ..., y_n),$

respectively, and let \mathbf{R}^{mn} be the real mn-dimensional space of all points or vectors

$$\mathbf{z} = (z_{11}, z_{12}, ..., z_{mn}),$$

where the coordinates

$$z_{hk}$$
, $(h = 1, 2,..., m, k = 1, 2,..., n)$

are arranged in lexicographical order. We denote by

$$\mathbf{u}_1 = (1, ..., 0), ..., \mathbf{u}_m = (0, ..., 1)$$

0022-314X/86 \$3.00

NEW TRANSFER PRINCIPLE

 $\mathbf{v}_1 = (1, ..., 0), ..., \mathbf{v}_n = (0, ..., 1)$

all other places. With the usual notation for sums of vectors and for the

$$\mathbf{w}_{hk}$$
, $(h = 1, 2, ..., m, k = 1, 2, ..., n)$

the analogous points in \mathbb{R}^n , and by

the mn points in \mathbf{R}^{mn} which have a coordinate 1 at the place h, k and 0 at

product of a vector with a scalar, the points \mathbf{x} , \mathbf{y} , and \mathbf{z} may then be written as

$$\mathbf{x} = \sum_{h=1}^{m} x_h \mathbf{u}_h, \qquad \mathbf{y} = \sum_{k=1}^{n} y_k \mathbf{v}_k, \qquad \mathbf{z} = \sum_{h=1}^{m} \sum_{k=1}^{n} z_{hk} \mathbf{w}_{hk}.$$

and \mathbf{R}^{mn} , respectively, which have integral coordinates. Then the lattice points \mathbf{u}_h form a basis of \mathbf{L}^m , the lattice points \mathbf{v}_k a basis of \mathbf{L}^n , and the lattice points \mathbf{w}_{hk} form a basis of \mathbf{L}^{mn} . All three lattices have the determinant 1.

Finally, denote by L^m , L^n , and L^{mn} the lattices of all points in R^m , R^n ,

2. We introduce now the mapping $\mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^{mn}$ defined by the equations

When x runs over the whole space \mathbb{R}^m and y over the whole space \mathbb{R}^n ,

$$z_{hk} = x_h \cdot y_k$$
, $(h = 1, 2, ..., m, k = 1, 2, ..., n)$.

We write $z = x \times y$ and note that here the order of x and y may not be

then $z = x \times y$ describes the algebraic manifold in R^{mn} , M say, which is defined by the algebraic equations

$$z_{hk}z_{ii} = z_{hi}z_{ik}$$
, $h, i = 1, 2,..., m, k, j = 1, 2,..., n$).

Since $\mathbf{u}_h \times \mathbf{v}_k = \mathbf{w}_{hk}$ for h = 1, 2, ..., m and k = 1, 2, ..., n, the manifold M con-

tains the mn unit points \mathbf{w}_{hk} which together span the space \mathbf{R}^{mn} . In the equation $\mathbf{z} = \mathbf{x} \times \mathbf{y}$ the coordinates of \mathbf{z} are bilinear forms in the

coordinates of \mathbf{x} and of \mathbf{y} and hence are continuous functions in these coordinates.

3. Denote by

altered.

$$\mathbf{A} = (a_{hi}) \qquad \text{and} \qquad \mathbf{B} = (b_{kj})$$

KURT MAHLER

 $a = \det(a_{hi}) \neq 0$

and a real non-singular $n \times n$ matrix of determinant

We associate with A the non-singular linear transformation of R^m defined by

 $b = \det(b_{ki}) \neq 0$.

$$\mathbf{X} = \mathbf{A}\mathbf{x} = (X_1, ..., X_m),$$
 where $X_h = \sum_{i=1}^m a_{hi}x_i$ $(h = 1, 2, ..., m)$ and with **B** the non-singular linear transformation of \mathbf{R}^n defined by

 $\mathbf{Y} = \mathbf{B}\mathbf{y} = (Y_1, ..., Y_n),$ where $Y_k = \sum_{j=1}^n b_{kj} y_j$ (k = 1, 2, ..., n).

If simultaneously **A** is applied to **x** and **B** to **y**, then $z = x \times y$ is changed into $Z = Ax \times By = X \times Y = (Z_{11}, Z_{12}, ..., Z_{mn}),$

where the new coordinates Z_{hk} are again numbered lexicographically and have the values

$$Z_{hk} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{hi} b_{kj} z_{ij}, \qquad (h = 1, 2, ..., m, k = 1, 2, ..., n).$$
This is again a linear transformation of \mathbf{P}_{i}^{mn} defined by

This is again a linear transformation of R^{mn} defined by

$$\mathbf{Z} = \mathbf{C}\mathbf{z}$$
, where $\mathbf{C} = (c_{hi,kj})$

and $c_{hihi} = a_{hi}b_{hi}$, (h, i = 1, 2, ..., m, k, j = 1, 2, ..., n). As is well known, the $mn \times mn$ matrix **C** has the determinant

$$c = \det(c_{hi,kj}) = a^n b^m \neq 0,$$
 so that also **C** is non-singular. We shall use the notation **C** = **A** × **B**.

4. A "body" is a point set with interior points and a "convex body"

a closed bounded convex body which is symmetric in the coordinate origin $\mathbf{o} = (0, ..., 0)$, and for which \mathbf{o} is an interior point. Let K^m be any convex body in \mathbb{R}^m and K^n any convex body in \mathbb{R}^n . As the

(1)

NEW TRANSFER PRINCIPLE

 $z = x \times v$

Denote by K^{mn} the convex hull of Σ so that K^{mn} is a convex point set in

describes a certain point set, Σ say, which is a subset of the manifold M.

the product point

 \mathbf{R}^{mn} . We shall use the notation

hence K^{mn} is symmetric in **o**.

$$K^{mn} = K^m \times K^n.$$

LEMMA 1. The point set K^{mn} is a convex body.

Proof. Since the mapping (1) is continuous, both Σ and K^{mn} are bounded closed point sets; further K^{mn} , as already said, is convex. Next, if x is any point of K^m , then also -x belongs to K^m . Now

$$(-\mathbf{x}) \times \mathbf{v} = -\mathbf{x} \times \mathbf{v}.$$

It follows that if z is any point of K^{mn} , then also -z belongs to K^{mn} , and

Finally, o is an interior point of K^{mn} . For both K^m and K^n contain the origins of \mathbb{R}^m and of \mathbb{R}^n , respectively, as interior points. This implies that there exist two positive constants δ and ε such that K^m contains the 2mpoints $\pm \delta \cdot \mathbf{u}_h$ (h = 1, 2, ..., m),

$$K^n$$
 contains the $2n$ points

 $+ \varepsilon \cdot \mathbf{v}_k$ (k = 1, 2, ..., n),

and therefore both the set Σ and the convex body K^{mn} contain the 2mnpoints

 $+\delta\varepsilon\cdot\mathbf{w}_{hk}$ (h=1, 2,..., m, k=1, 2,..., n).

But then, by convexity,
$$K^{mn}$$
 contains all points of the form

 $\delta \varepsilon \sum_{k=1}^{m} \sum_{k=1}^{n} t_{hk} \mathbf{w}_{hk},$

where t_{11} , t_{12} ,..., t_{mn} denote any real numbers satisfying the inequality

here
$$t_{11}, t_{12}, ..., t_{mn}$$
 denote any real numbers
$$\sum_{k=1}^{m} \sum_{k=1}^{n} |t_{hk}| \leq 1.$$

5. Let again A, B, and C be the transformations in Section 3, and let further $K^{mn} = K^m \times K^n$. Put $K^{om} = \mathbf{A}K^m$, $K^{on} = \mathbf{B}K^n$, and $K^{omn} = \mathbf{C}K^{mn}$.

 $K^{omn} = K^{om} \times K^{on}$.

KURT MAHLER

Here AK^m is to consist of all points Ax, where x belongs to K^m , and

similarly for
$$\mathbf{B}K^n$$
 and $\mathbf{C}K^{mn}$. Since we are dealing with affine transformations, K^{om} , K^{on} , and K^{omn} are again convex bodies, and moreover

Next denote by

Then evidently

by the equation

Therefore

$$J^{(m)} = \int \cdots \int_{K^m} dx_1 \cdots dx_m, \qquad J^{(n)} = \int \cdots \int_{K^n} dy_1 \cdots dy_n,$$

$$J^{(m,n)} =$$

$$J^{(m,n)} = \int \cdots \int_{K^{mn}} dz_{11} dz_{12} \cdots dz_{mn}$$

$$K^{n}, \text{ and } K^{mn} \text{ in their respective}$$

$$K^{n}$$
, and K^{n} and K^{n}

the volumes of
$$K^m$$
, K^n , and K^{mn} in their respective spaces and by $J^{o(m)}$, $J^{o(n)}$, and $J^{o(m,n)}$ the analogous volumes of K^{om} , K^{on} , and K^{omn} , respectively. Then evidently

volumes depend only on the degrees m and n.

$$K^n$$
, and analogous

the volumes of
$$K^m$$
, K^n , and K^{mn} in their respective spaces and by $J^{o(m)}$, $I^{o(n)}$, and $I^{o(m,n)}$ the analogous volumes of K^{om} , K^{on} and K^{omn} respectively.

$$\cdots \int_{K^{mn}} dz_1$$

$$dz_{11}dz_{12}$$

$$\int_{K^n} K^n dz$$

$$K^n$$
 $2 \cdots dz$

$$\int_{K^n} ay_1 = a$$

 $J^{o(m)} = aJ^{(m)}, \quad J^{o(n)} = bJ^{(n)}, \quad \text{and} \quad J^{o(m,n)} = cJ^{(m,n)} = a^n b^m J^{(m,n)}.$

 $J^{o(m)n}J^{o(n)m}/J^{o(m,n)} = J^{(m)n}J^{(n)m}/J^{(m,n)}$

 $G^{mn} = G^m \times G^n$.

This body G^{mn} is rather complicated and is in fact the convex hull of the intersection of the unit ball $|z| \le 1$ in \mathbb{R}^{mn} with the manifold M. Let $g^{(m)}$, $g^{(n)}$, and $g^{(m,n)}$ be the volumes of G^m , G^n , and G^{mn} , respectively. These three

Next let E^m be any ellipsoid in \mathbb{R}^m and E^n any ellipsoid in \mathbb{R}^n , both with

6. Consider first a special case. Denote by G^m and G^n the unit ball $|\mathbf{x}| \leq 1$ in \mathbf{R}^m and the unit ball $|\mathbf{y}| \leq 1$ in \mathbf{R}^n and define a convex body G^{mn}

so that this quotient of volumes is invariant under the transformations.

respectively.

such that

Proof. There exist two non-singular linear transformations $\bf A$ in $\bf R^m$ and $\bf B$ in $\bf R^n$ such that

 $E^{mn} = \mathbf{C}G^{mn}$.

 $e^{(m,n)} = c_1 e^{(m)n} \cdot e^{(n)m}$.

NEW TRANSFER PRINCIPLE

their centres at the origins of \mathbb{R}^m and \mathbb{R}^n , respectively, and let E^{mn} be the

The volumes of E^m , E^n , and E^{mn} will be denoted by $e^{(m)}$, $e^{(n)}$, and $e^{(m,n)}$,

LEMMA 2. There exists a positive number c_1 depending only on m and n

 $E^m = \mathbf{A}G^m \qquad \text{and} \qquad E^n = \mathbf{B}G^n$ and therefore

where **C** is derived from **A** and **B** as in Section 3. It follows now from Section 5 that $e^{(m)} = ag^{(m)}, \qquad e^{(n)} = bg^{(n)}, \qquad e^{(m,n)} = cg^{(m,n)} = a^n b^m g^{(m,n)},$

whence the assertion on putting $c_1 = g^{(m,n)}/g^{(m)n}g^{(n)m}.$

7. If S is any point set and s > 0 is a scalar, denote as usual by sS the set of all points sP where P runs over S. It is obvious that in this notation, for every convex body K^m in \mathbf{R}^m and every convex body K^n in \mathbf{R}^n and for any two positive numbers s and t, from the definition of $K^m \times K^n$,

 $sK^m \times tK^n = stK^{mn}$. By the same definition, if K_1^m and K_2^m are two convex bodies in \mathbf{R}^m , and K_1^n and K_2^n are two convex bodies in \mathbf{R}_n , such that

 $K_1^m \subset K_2^m$ and $K_1^n \subset K_2^n$

and if further

 $K_1^{mn} = K_1^m \times K_1^n$ and $K_2^{mn} = K_2^m \times K_2^n$,

then also

KURT MAHLER

 $K_1^{mn} \subset K_2^{mn}$.

Let now again K^m , K^n , and $K^{mn} = K^m \times K^n$ be the original convex bodies in \mathbb{R}^m , \mathbb{R}^n , and \mathbb{R}^{mn} , respectively, and let $J^{(m)}$, $J^{(n)}$, and $J^{(m,n)}$ be their

Proof. By a theorem by John [1] there exists in \mathbb{R}^m an ellipsoid E^m and in \mathbb{R}^n an ellipsoid E^n such that $m^{-1/2}E^m \subset K^m \subset E^m$ and $n^{-1/2}E^n \subset K^n \subset E^n$,

 $c_2 J^{(m)n} J^{(n)m} \leq J^{(m,n)} \leq c_3 J^{(m)n} J^{(n)m}$.

THEOREM 1. There exist two positive constants c_2 and c_3 which depend

hence that $(mn)^{-1/2}E^{mn} \subset K^{mn} \subset E^{mn}$.

volumes. Then the following result holds:

only on the dimensions m and n such that

Let again $J^{(m)}$, $J^{(n)}$, $J^{(m,n)}$, $e^{(m)}$, $e^{(m)}$, $e^{(m,n)}$ be the volume of K^m , K^n , K^{mn} , E^m ,

 $n^{-1/2}E^n$ has the volume $n^{-n/2}e^{(n)}$, and $(mn)^{-1/2}E^{mn}$ has the volume $(mn)^{-mn/2}e^{(m,n)}$. By what has already been proved, $m^{-m/2}e^{(m)} \leqslant J^{(m)} \leqslant e^{(m)}, \qquad n^{-n/2}e^{(n)} \leqslant J^{(n)} \leqslant e^{(n)},$

 $(mn)^{-mn/2}e^{(m,n)} \leq J^{(m,n)} \leq e^{(m,n)}.$

 E^n , and E^{mn} , respectively. Then $m^{-1/2}E^m$ has the volume $m^{-m/2}e^{(m)}$,

Therefore by Lemma 2, $J^{(m,n)}/J^{(m)n}J^{(n)m} \leq e^{(m,n)}(m^{-m/2}e^{(m)})^{-n}(n^{-n/2}e^{(n)})^{-m} \leq c_1(mn)^{mn}$

and

 $J^{(m,n)}/J^{(m)n}J^{(n)m} \geqslant (mn)^{-mn/2}e^{(m,n)}/e^{(m)n}e^{(n)m} = c_1(mn)^{-mn/2}.$

On putting $c_2 = c_1(mn)^{-mn/2}$ and $c_3 = c_1(mn)^{mn}$, this proves the assertion.

8. To each of the three convex bodies K^m , K^n , and K^{mn} corresponds a convex distance function, $F^{(m)}(\mathbf{x})$ in \mathbf{R}^m , $F^{(n)}(\mathbf{y})$ in \mathbf{R}^n , and

 $F^{(m,n)}(\mathbf{z})$ in \mathbf{R}^{mn} , respectively. Here, e.g., $F^{(m)}(\mathbf{x})$ is defined by $0 \le F^{(m)}(\mathbf{x}) \le 1$ if and only if $\mathbf{x} \in K^m$,

 $F^{(n)}(\mathbf{y})$ and $F^{(m,n)}(\mathbf{z})$, in particular,

or more explicitly,

Further.

On defining \mathbf{z}^0 now by $\mathbf{z}^0 = \mathbf{x}^0 \times \mathbf{y}^0$,

whence the assertion.

(Minkowski [4]).

 $F^{(m)}(s\mathbf{x}) = |s| F(\mathbf{x})$

 $F^{(m)}(\mathbf{x}_1 + \mathbf{x}_2) \leq F^{(m)}(\mathbf{x}_1) + F^{(m)}(\mathbf{x}_2).$

Analogous properties are satisfied by the two other distance functions

 $F^{(m)}(\mathbf{o}) = 0, \qquad F^{(m)}(\mathbf{x}) > 0 \qquad \text{if } \mathbf{x} \neq \mathbf{o}$:

NEW TRANSFER PRINCIPLE

 $\mathbf{x} \in sK^m$ if $|s| \ge F^{(m)}(\mathbf{x})$ and $\mathbf{x} \notin sK^m$ if $|s| < F^{(m)}(\mathbf{x})$.

 $0 \le F^{(n)}(\mathbf{y}) \le 1$ if and only if $\mathbf{y} \in K^{(n)}$, $0 \le F^{(m,n)}(\mathbf{z}) \le 1$ if and only if $\mathbf{z} \in K^{mn}$.

LEMMA 3. If $\mathbf{x} \in \mathbf{R}^m$ and $\mathbf{y} \in \mathbf{R}^n$ and therefore $\mathbf{z} = \mathbf{x} \times \mathbf{y} \in \mathbf{R}^{mn}$, then

for all real s and $\mathbf{x} \in \mathbf{R}^m$;

Proof. The assertion is obvious if $\mathbf{x} = \mathbf{o}$ or $\mathbf{v} = \mathbf{o}$ and therefore $\mathbf{z} = 0$. Let

 $\mathbf{x}^0 = F^{(m)}(\mathbf{x})^{-1} \mathbf{x}$ and $\mathbf{y}^0 = F^{(n)}(\mathbf{y})^{-1} \mathbf{y}$,

evidently $F^{(m)}(\mathbf{x}^0) = 1$ and $F^{(n)}(\mathbf{y}^0) = 1$ and therefore $\mathbf{x}^0 \in K^m$ and $\mathbf{y}^0 \in K^n$.

 $\mathbf{z}^0 = \mathbf{x}^0 \times \mathbf{v}^0 = F^{(m)}(\mathbf{x})^{-1} F^{(n)}(\mathbf{y})^{-1} \mathbf{x} \times \mathbf{y} = F^{(m)}(\mathbf{x})^{-1} F^{(n)}(\mathbf{y})^{-1} \mathbf{z}.$

Since $\mathbf{x}^0 \in K^m$ and $\mathbf{y}^0 \in K^n$, also $\mathbf{z}^0 \in K^{mn}$ and therefore $F^{(m,n)}(\mathbf{z}^0) \leq 1$. But

 $F^{(m,n)}(\mathbf{z}^0) = F^{(m)}(\mathbf{x})^{-1} F^{(n)}(\mathbf{v})^{-1} F^{(m,n)}(\mathbf{z}),$

9. We combine the results so far obtained with Minkowski's theorem on the successive minima of a convex body in a lattice

This theorem will be applied three times, to K^m relative to the lattice L^m

 $F^{(m)}(\mathbf{x}) > 0$ and $F^{(n)}(\mathbf{y}) > 0$.

 $F^{(m,n)}(\mathbf{z}) \leq F^{(m)}(\mathbf{x}) F^{(n)}(\mathbf{v}).$

therefore $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$ so that

On putting

in L^m .

 $\frac{2^m}{m!} \leqslant J^{(m)} \mu_1^{(m)} \cdots \mu_m^{(m)} \leqslant 2^m,$

 $\frac{2^n}{n!} \leqslant J^{(n)} \mu_1^{(n)} \cdots \mu_n^{(n)} \leqslant 2^n,$

n linearly independent points $\mathbf{v}^1, \dots, \mathbf{v}^n$ in L^n . mn linearly independent points $z^1,...,z^{mn}$ in L^{mn} ,

in \mathbb{R}^m , to K^n relative to the lattice L^n in \mathbb{R}^n , and to K^{mn} relative to the lat-

with the corresponding successive minima $\mu_h^{(m)} = F^{(m)}(\mathbf{x}^h), \qquad (h = 1, 2, ..., m),$

$$\mu_h^{(m)} = F^{(m)}(\mathbf{x}^h), \qquad (h = 1, 2, ..., m)$$

$$\mu_k^{(n)} = F^{(n)}(\mathbf{y}^k), \qquad (k = 1, 2, ..., n),$$

$$\mu_k^{(n)} = F^{(n)}(\mathbf{y}^k), \qquad (k$$

$$\mu_k^{(m,n)} = F^{(m,n)}(\mathbf{z}^l) \qquad (l$$

tice L^{mn} in \mathbf{R}^{mn} . By this theorem, there exist then

m linearly independent points $\mathbf{x}^1,...,\mathbf{x}^m$

$$\mu_l^{(m,n)} = F^{(m,n)}(\mathbf{z}^l), \qquad (l$$

$$\mu_l^{(m,n)} = F^{(m,n)}(\mathbf{z}^l), \qquad (l = 1, 2, ..., mn),$$

$$\mu_{(m)} \leq \mu_{(m)} \leq \cdots \leq \mu_{(m)}$$

$$0 < \mu_1^{(m)} \leqslant \mu_2^{(m)} \leqslant \cdots \leqslant \mu_m^{(m)},$$

$$\mu_1^{(n)} \leqslant \mu_2^{(n)} \leqslant \cdots \leqslant \mu_n^{(n)},$$

$$0 < \mu_1^{(n)} \leqslant \mu_2^{(n)} \leqslant \cdots \leqslant \mu_n^{(n)},$$

$$\mu_1^{(n)} \leqslant \mu_2^{(n)} \leqslant \cdots \leqslant \mu_n^{(n)},$$

$$\mu_1^{(m,n)} \leqslant \mu_2^{(m,n)} \leqslant \cdots \leqslant \mu_{mn}^{(m,n)},$$

$$0 < \mu_1^{(m,n)} \leqslant \mu_2^{(m,n)} \leqslant \cdots \leqslant \mu_{mn}^{(m,n)}, \qquad \frac{2^{mn}}{(mn)!} \leqslant J^{(m,n)} \mu_1^{(m,n)} \cdots \mu_{mn}^{(m,n)} \leqslant 2^{mn}.$$

$$0 < \mu_1^{(m,n)} \leqslant \mu_2^{(m,n)} \leqslant \cdots \leqslant \mu_{mn}^{(m,n)},$$

$$0 < \mu_1^{(m,n)} \leqslant \mu_2^{(m,n)} \leqslant \cdots \leqslant \mu_{mn}^{(m,n)},$$
(ii) If $\mathbf{V}^1 = \mathbf{V}^m$ are m linearly

(ii) If
$$\mathbf{X}^1,...,\mathbf{X}^m$$
 are m linearly independent points in L^m , $\mathbf{Y}^1,...,\mathbf{Y}^n$ n linearly independent points in L^n , and $\mathbf{Z}^1,...,\mathbf{Z}^{mn}$ mn linearly independent

points in
$$L^{mn}$$
, and if these points are ordered such that

$$F^{(m)}(\mathbf{X}^1) \leqslant F^{(m)}(\mathbf{X}^2) \leqslant \cdots \leqslant F^{(m)}(\mathbf{X}^m),$$

$$F^{(n)}(\mathbf{Y}^1) \leqslant F^{(n)}(\mathbf{Y}^2) \leqslant \cdots \leqslant F^{(n)}(\mathbf{Y}^n),$$

 $F^{(m,n)}(\mathbf{Z}^1) \leqslant F^{(m,n)}(\mathbf{Z}^2) \leqslant \cdots \leqslant F^{(m,n)}(\mathbf{Z}^{mn}),$

$$F^{(m,n)}(\mathbf{Z}^1) \leqslant F^{(m,n)}(\mathbf{Z}^2) \leqslant$$

then

 $F^{(m)}(\mathbf{X}^h) \geqslant \mu_h^{(m)}, \qquad (h = 1, 2, ..., m),$

 $F^{(n)}(\mathbf{Y}^k) \geqslant \mu_k^{(n)}, \qquad (k = 1, 2, ..., n),$

 $F^{(m,n)}(\mathbf{Z}^l) \geqslant \mu_l^{(m,n)}, \qquad (l=1, 2, ..., mn).$

Here, in the inequalities (i), the factors $J^{(m)}$, $J^{(n)}$, and $J^{(m,n)}$ are again the

volumes of the convex bodies K^m , K^n , and K^{mn} , respectively. We deduce

from these inequalities that the quotient

satisfies the inequalities

that

and $c_5 = (m!)^n (n!)^n (c_3 2^{mn})^{-1}$. $c_4 = (c_3(mn)! \ 2^{mn})^{-1}$ We obtain then the following result:

NEW TRANSFER PRINCIPLE

 $q = \mu_1^{(m,n)} \cdots \mu_{mn}^{(m,n)} (\mu_1^{(m)} \cdots \mu_m^{(m)})^{-n} (\mu_1^{(n)} \cdots \mu_n^{(n)})^{-m}$

 $\frac{2^{mn}}{(mn)!} (2^m)^{-n} (2^n)^{-m} \leqslant J^{(m,n)} J^{(m)-n} J^{(n)-m} \cdot q \leqslant 2^{mn} \left(\frac{2^m}{m!}\right)^{-n} \left(\frac{2^n}{n!}\right)^{-m}.$

Here apply Theorem 1 to the quotient $J^{(m,n)}J^{(m)-n}J^{(n)-m}$ and put

Lemma 4. There exist two positive constants c_4 and c_5 which depend only

$$c_4(\mu_1^{(m)}\cdots\mu_m^{(m)})^n (\mu_1^{(n)}\cdots\mu_n^{(n)})^m \leqslant \mu_1^{(m,n)}\cdots\mu_{mn}^{(m,n)}$$

$$\leqslant c_5(\mu_1^{(m)}\cdots\mu_m^{(m)})^n (\mu_1^{(n)}\cdots\mu_n^{(n)})^m.$$

10. Let again \mathbf{x}^h (h = 1, 2, ..., m) be m linearly independent points in

Let again
$$\mathbf{x}^n$$
 $(h = 1, 2,..., m)$ be m linearly independent points in L^m and \mathbf{y}^k $(k = 1, 2,..., n)$, n linearly independent points in L^n at which the successive minima $\mu_h^{(m)}$ and $\mu_k^{(n)}$ are attained. Then the mn product points

 $\mathbf{Z}^{hk} = \mathbf{x}^h \times \mathbf{v}^k$, (h = 1, 2, ..., m, k = 1, 2, ..., n)lie in the lattice L^{mn} and, moreover, they are linearly independent. For

there are two non-singular transformations A and B as in Section 2 such

 $\mathbf{x}^h = \mathbf{A}\mathbf{u}_h \ (h = 1, 2, ..., m)$ and $\mathbf{y}^k = \mathbf{B}\mathbf{v}_k \ (k = 1, 2, ..., n).$ Further, $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ is non-singular, and

$$\mathbf{Z}^{hk} = \mathbf{Cw}_{hk}, \qquad (h = 1, 2, ..., m, k = 1, 2, ..., n),$$

where the mn unit points \mathbf{w}_{hk} span the space R^{mn} .

 $f_{hk}^{(m,n)} = F^{(m,n)}(\mathbf{Z}^{hk}), \qquad (h = 1, 2, ..., m, k = 1, 2, ..., n)$ and denote for l = 1, 2, ..., mn by $f_l^{(m,n)}$ the same quantities $f_{hk}^{(m,n)}$ ordered

according to size, $f_1^{(m,n)} \leqslant f_2^{(m,n)} \leqslant \cdots \leqslant f_{mn}^{(m,n)}$ (2) $1 \leq h \leq m, \ 1 \leq k \leq n.$

From property (ii) of the successive minima $\mu_i^{(m,n)}$ and from the ordering (2) it follows that $f_{l}^{(m,n)} \geqslant \mu_{l}^{(m,n)}, \qquad (l=1, 2,..., mn).$

This ordering (which will not be unique if several of the values $f_{hk}^{(m,n)}$ are

 $l \leftrightarrow (h, k)$

between the integers l in $1 \le l \le mn$ and the pairs of integers (h, k) with

On the other hand, by Lemma 3, $f_{\perp}^{(m,n)} = F^{(m,n)}(\mathbf{Z}^{hk}) \leqslant F^{(m)}(\mathbf{x}^h) F^{(n)}(\mathbf{y}^k) = \mu_{h}^{(m)} \mu_{h}^{(n)}$

We obtain therefore the system of mn inequalities (iii) $\mu_l^{(m,n)} \leqslant \mu_h^{(m)} \mu_h^{(n)} \text{ for } l \leftrightarrow (h, k),$

from which, on multiplying over all suffixes l, it follows in particular that

 $\mu_1^{(m,n)}\cdots\mu_{mn}^{(m,n)} \leqslant (\mu_1^{(m)}\cdots\mu_m^{(m)})^n (\mu_1^{(n)}\cdots\mu_n^{(n)})^m,$ which is slightly better than the right-hand inequality given by Lemma 4. A valid inequality is also obtained if on the left-hand side of this formula the

factor $\mu_{I}^{(m,n)}$ is omitted while the right-hand side is divided by the corresponding product $\mu_h^{(m)}\mu_k^{(n)}$, where again $l \leftrightarrow (h, k)$. On dividing now the left-hand formula in Lemma 4 by this new inequality, it follows that

(iv) $\mu_{l}^{(m,n)} \ge c_{\perp} \mu_{l}^{(m)} \mu_{l}^{(n)}$, for $l \leftrightarrow (h, k)$. We have so obtained the following result:

equal) establishes thus a 1-to-1 correspondence

THEOREM 2. There exists a constant $c_4 > 0$ depending only on m and n, with the following property: Denote by $\mu_h^{(m)}$, (h = 1, 2, ..., m), the successive minima of the convex body K^m in \mathbf{R}^m , by $\mu_k^{(n)}$ (k=1,2,...,n), the successive minima of the convex body K^n in \mathbb{R}^n , and by $\mu_l^{(m,n)}$ (l=1,2,...,mn), the suc-

cessive minima of the convex body $K^{mn} = K^m \times K^n$ in \mathbf{R}^{mn} . Let further $p_1^{(m,n)}$

$$(l=1, 2,..., mn)$$
, be the mn products

 $\mu_k^{(m)}\mu_k^{(n)}, \qquad (h=1, 2, ..., m, k=1, 2, ..., n)$ numbered in order of increasing size,

$$p_1^{(m,n)} \leqslant p_2^{(m,n)} \leqslant \cdots \leqslant p_{mn}^{(m,n)}.$$

Then $c_4 p_1^{(m,n)} \leq \mu_1^{(m,n)} \leq p_1^{(m,n)}$ (l=1, 2, ..., mn).

(I)

successive minima of convex bodies defined by linear inequalities. The two special convex distance functions

Hence in particular,

generate the convex bodies $K_0^m: F_0^{(m)}(\mathbf{x}) \le 1$ in \mathbf{R}^m and $K_0^n: F_0^{(n)}(\mathbf{y}) \le 1$ in \mathbf{R}^n ,

NEW TRANSFER PRINCIPLE

 $c_4 \mu_1^{(m)} \mu_1^{(n)} \leqslant \mu_1^{(m,n)} \leqslant \mu_1^{(m)} \mu_1^{(n)}, \qquad c_4 \mu_m^{(m)} \mu_n^{(n)} \leqslant \mu_{mn}^{(m,n)} \leqslant \mu_m^{(m)} \mu_n^{(n)}.$

 $F_0^{(m)}(\mathbf{x}) = \max(|x_1|, ..., |x_m|)$ and $F_0^{(n)}(\mathbf{y}) = \max(|y_1|, ..., |y_n|)$

which are generalized cubes of side 2 with their centres at the origin of \mathbf{R}^m

By means of Theorem 2 we shall finally prove a property of the

 $K_0^{*mn} = K_0^m \times K_0^n$ in \mathbf{R}^{mn} is rather complicated. If $F_0^{*(m,n)}(\mathbf{z})$ is its distance function, then K_0^{*mn} consists of the points $z \in \mathbb{R}^{mn}$ for which

and \mathbf{R}^n , respectively. The product body

 $F_0^{*(m,n)}(\mathbf{z}) \leq 1.$ We introduce the further distance function

 $F_0^{(m,n)}(\mathbf{z}) = \max(|z_{11}|, |z_{12}|, ..., |z_{mn}|)$

and the corresponding convex body

 $K_0^{mn}: F_0^{(m,n)}(\mathbf{z}) \leq 1$ in \mathbf{R}^{mn} .

which is again a generalised cube of side 2 with centre at the origin. It is easily seen that

and therefore

 $F_{0}^{(m,n)}(\mathbf{z}) \leqslant F_{0}^{*(m,n)}(z)$ for all $\mathbf{z} \in \mathbf{R}^{mn}$.

Further, the origin o is an interior point of K_0^{*mn} . This implies that there is a constant $c_6 > 0$ depending only on m and n such that all points z satisfying

 $F_0^{(m,n)}(\mathbf{z}) \leq 1/c_6$

 $K_0^{*mn} \subset K_0^{mn}$

 $K_0^{mn} \subset c_6 K_0^{*mn}$,

 $F_0^{*(m,n)}(\mathbf{z}) \leqslant c_6 F_0^{(m,n)}(\mathbf{z})$ for all $\mathbf{z} \subset \mathbf{R}^{mn}$.

and therefore

belong to K_0^{*mn} , hence that

12. Denote again by $\mathbf{A} = (a_{hi})$ and $\mathbf{B} = (b_{ki})$

a real $m \times m$ matrix and a real $n \times n$ matrix, and by

The four new distance functions

centres at the origin, but the body

With a slight change of notation, let

define the convex bodies

is more complicated.

and

and

 $\mathbf{C} = \mathbf{A} \times \mathbf{B} = (c_{hi,ki}), \quad \text{where} \quad c_{hi,ki} = a_{hi}b_{ki},$

the $mn \times mn$ matrix formed from **A** and **B**. It suffices to consider the case when all three matrices have the determinants 1,

 $F^{(m)}(\mathbf{x}) = F_0^{(m)}(\mathbf{A}\mathbf{x})$ in \mathbf{R}^m , $F^{(n)}(\mathbf{y}) = F_0^{(n)}(\mathbf{B}\mathbf{y})$ in \mathbf{R}^n ,

 $F^{*(m,n)}(\mathbf{z}) = F_0^{*(m,n)}(\mathbf{C}\mathbf{z})$ and $F^{(m,n)}(\mathbf{z}) = F_0^{(m,n)}(\mathbf{C}\mathbf{z})$ in \mathbf{R}^{mn}

 $K^m: F^{(m)}(\mathbf{x}) \le 1$ in \mathbf{R}^m , $K^n: F^{(n)}(\mathbf{y}) \le 1$ in \mathbf{R}^n ,

 $K^{*mn}: F^{*(m,n)}(\mathbf{z}) \leq 1$ and $K^{mn}: F^{(m,n)}(\mathbf{z}) \leq 1$ in \mathbb{R}^{mn} .

Of these bodies K^m , K^n , and K^{mn} are generalised parallelepipeds with their

 $K^{*mn} = K^m \times K^n$

 $\mu_k^{(m)}, \quad \mu_k^{(n)}, \quad \mu_l^{*(m,n)}, \quad \text{and} \quad \mu_l^{(m,n)}$

 $F^{(m,n)}(\mathbf{z}) \leqslant F^{*(m,n)}(\mathbf{z}) \leqslant c_6 F^{(m,n)}(\mathbf{z})$ for all points $\mathbf{z} \in \mathbf{R}^{mn}$. (III)

In any case, inequalities (I) and (II) of the last section imply that

a = 1, b = 1, $c = a^n b^m = 1.$

(II)

and L^{mn} , respectively. Further denote by

 $\mu_l^{*(m,n)} = F^{*(m,n)}(\mathbf{z}^{*l})$ and $\mu_l^{(m,n)} = F^{(m,n)}(\mathbf{z}^l)$ (l = 1, 2, ..., mn).

Here, by Theorem 2, if $p_i^{(m,n)}$ has the same meaning as before, $c_{\star} p_{l}^{(m,n)} \leq \mu_{l}^{*(m,n)} \leq p_{l}^{(m,n)}$ (l = 1, 2,..., mn).

two systems of mn linearly independent lattice points in L^{mn} such that

NEW TRANSFER PRINCIPLE

 \mathbf{z}^{*l} and \mathbf{z}^{l} (l=1, 2,..., mn)

Further, by property (ii) of the successive minima,

 $F^{*(m,n)}(\mathbf{z}^l) \geqslant F^{*(m,n)}(\mathbf{z}^{*l}), \qquad F^{(m,n)}(\mathbf{z}^{*l}) \geqslant F^{(m,n)}(\mathbf{z}^l) \qquad (l = 1, 2, ..., mn),$ and therefore by (III)

 $(c_4/c_6) p_l^{(m,n)} \le (1/c_6) \mu_l^{*(m,n)} \le \mu_l^{(m,n)} \le \mu_l^{*(m,n)} \le p_l^{(m,n)}$ (l = 1, 2, ..., mn).We thus arrive at the following result:

THEOREM 3. There exists a constant $c_7 > 0$ depending only on m and n, with the following property: Denote by $\mathbf{A} = (a_{hi})$ a real $m \times m$ matrix and by $\mathbf{B} = (b_{ki})$ a real $n \times n$ matrix, and let \mathbf{C} be the $mn \times mn$ matrix

 $\mathbf{C} = \mathbf{A} \times \mathbf{B} = (c_{hi,kj}), \quad where \quad c_{hi,kj} = a_{hi} \cdot b_{kj}$ (h = 1, 2, ..., m, k = 1, 2, ..., n).

Without loss of generality, all three matrices have the determinant 1. Let
$$\mu_h^{(m)}$$
, $\mu_k^{(n)}$, and $\mu_l^{(m,n)}$ be the successive minima of the convex distance functions
$$F^{(m)}(\mathbf{x}) = \max_{h=1,2,\dots,m} \left| \sum_{i=1}^{m} a_{hi} x_i \right|, \qquad F^{(n)}(\mathbf{y}) = \max_{k=1,2,\dots,n} \left| \sum_{i=1}^{n} b_{kj} y_j \right|,$$

and

$$F^{(m,n)}(\mathbf{z}) = \max_{\substack{h = 1,2,...,m\\k = 1,2,...,n}} \left| \sum_{i=1}^{m} \sum_{j=1}^{n} c_{hi,kj} z_{ij} \right|,$$

respectively. Denote by $p_l^{(m,n)}$ (l=1, 2,..., mn) the products

pectively. Denote by
$$p_i^{(m)}$$
, $(i = 1, 2,..., mn)$ the products $\mu_h^{(m)} \mu_k^{(n)}$, $(h = 1, 2,..., m, k = 1, 2,..., n)$,

numbered such that

$$p_1^{(m,n)} \leqslant p_2^{(m,n)} \leqslant \cdots \leqslant p_{mn}^{(m,n)}.$$

Then

$$c_7 p_l^{(m,n)} \le \mu_l^{(m,n)} \le p_l^{(m,n)}, \qquad (l = 1, 2, ..., mn),$$

and in particular,

$$c_7 \mu_1^{(m)} \mu_1^{(n)} \leqslant \mu_1^{(m,n)} \leqslant \mu_1^{(m)} \mu_1^{(n)}, \qquad c_7 \mu_m^{(m)} \mu_n^{(n)} \leqslant \mu_{mn}^{(m,n)} \leqslant \mu_m^{(m)} \mu_n^{(n)}.$$

REFERENCES

1. F. John, Extremum problems with inequalities as subsiduary conditions, in "Studies and Essays Presented to R. Courant on His 60th Birthday, January 8, 1948" (Courant Anniver-

sary Volume), pp. 187–204, Interscience, New York, 1948.
 K. Mahler, On compound convex bodies, I, Proc. London Math. Soc. (3) 5 (1955), 358–379.
 K. Mahler, Invariant matrices and the geometry of numbers, Proc. Roy. Soc. Edinburgh Sect. A 64 (1956), 223–238.
 H. Minkowski, "Geometrie der Zahlen," Teubner, Leipzig/Berlin, 1910.